Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oleg Y. Gnedin is active.

Publication


Featured researches published by Oleg Y. Gnedin.


The Astrophysical Journal | 2004

Response of dark matter halos to condensation of baryons: Cosmological simulations and improved adiabatic contraction model

Oleg Y. Gnedin; Andrey V. Kravtsov; Anatoly Klypin; Daisuke Nagai

The cooling of gas in the centers of dark matter halos is expected to lead to a more concentrated dark matter distribution. The response of dark matter to the condensation of baryons is usually calculated using the model of adiabatic contraction, which assumes spherical symmetry and circular orbits. In contrast, halos in the hierarchical structure formation scenarios grow via multiple violent mergers and accretion along filaments, and particle orbits in the halos are highly eccentric. We study the effects of the cooling of gas in the inner regions of halos using high-resolution cosmological simulations that include gas dynamics, radiative cooling, and star formation. We find that the dissipation of gas indeed increases the density of dark matter and steepens its radial profile in the inner regions of halos compared to the case without cooling. For the first time, we test the adiabatic contraction model in cosmological simulations and find that the standard model systematically overpredicts the increase of dark matter density in the inner 5% of the virial radius. We show that the model can be improved by a simple modification of the assumed invariant from M(r)r to M()r, where r and are the current and orbit-averaged particle positions. This modification approximately accounts for orbital eccentricities of particles and reproduces simulation profiles to within 10%-20%. We present analytical fitting functions that accurately describe the transformation of the dark matter profile in the modified model and can be used for interpretation of observations.


The Astrophysical Journal | 2007

Cats and Dogs, Hair and a Hero: A Quintet of New Milky Way Companions*

Vasily Belokurov; Daniel B. Zucker; N. W. Evans; Jan Kleyna; S. E. Koposov; Simon T. Hodgkin; M. J. Irwin; G. Gilmore; M. I. Wilkinson; M. Fellhauer; D. M. Bramich; Paul C. Hewett; S. Vidrih; J. T. A. de Jong; J. A. Smith; H.-W. Rix; Eric F. Bell; R. F. G. Wyse; Heidi Jo Newberg; P. A. Mayeur; Brian Yanny; Constance M. Rockosi; Oleg Y. Gnedin; Donald P. Schneider; Timothy C. Beers; John C. Barentine; Howard J. Brewington; J. Brinkmann; Mike Harvanek; Scott J. Kleinman

We present five new satellites of the Milky Way discovered in Sloan Digital Sky Survey (SDSS) imaging data, four of which were followed-up with either the Subaru or the Isaac Newton Telescopes. They include four probable new dwarf galaxies--one each in the constellations of Coma Berenices, Canes Venatici, Leo and Hercules--together with one unusually extended globular cluster, Segue 1. We provide distances, absolute magnitudes, half-light radii and color-magnitude diagrams for all five satellites. The morphological features of the color-magnitude diagrams are generally well described by the ridge line of the old, metal-poor globular cluster M92. In the last two years, a total of ten new Milky Way satellites with effective surface brightness {mu}{sub v} {approx}> 28 mag arcsec{sup -2} have been discovered in SDSS data. They are less luminous, more irregular and appear to be more metal-poor than the previously-known nine Milky Way dwarf spheroidals. The relationship between these objects and other populations is discussed. We note that there is a paucity of objects with half-light radii between {approx} 40 pc and {approx} 100 pc. We conjecture that this may represent the division between star clusters and dwarf galaxies.


The Astrophysical Journal | 2004

The Tumultuous Lives of Galactic Dwarfs and the Missing Satellites Problem

Andrey V. Kravtsov; Oleg Y. Gnedin; Anatoly Klypin

Hierarchical cold dark matter (CDM) models predict that Milky Way-sized halos contain several hundred dense low-mass dark matter satellites (the substructure), an order of magnitude more than the number of observed satellites in the Local Group. If the CDM paradigm is correct, this prediction implies that the Milky Way and Andromeda are filled with numerous dark halos. To understand why these halos failed to form stars and become galaxies, we need to understand their history. We analyze the dynamical evolution of the substructure halos in a high-resolution cosmological simulation of Milky Way-sized halos in the ?CDM cosmology. We find that about 10% of the substructure halos with the present masses 108-109 M? (circular velocities Vm 30 km s-1) had considerably larger masses and circular velocities when they formed at redshifts z 2. After the initial period of mass accretion in isolation, these objects experience dramatic mass loss because of tidal stripping. Our analysis shows that strong tidal interaction is often caused by actively merging massive neighboring halos, even before the satellites are accreted by their host halo. These results can explain how the smallest dwarf spheroidal galaxies of the Local Group were able to build up a sizable stellar mass in their seemingly shallow potential wells. We propose a new model in which all the luminous dwarf spheroidals in the Local Group are descendants of the relatively massive (109 M?) high-redshift systems, in which the gas could cool efficiently by atomic line emission, and which were not significantly affected by the extragalactic ultraviolet radiation. We present a simple galaxy formation model based on the trajectories extracted from the simulation, which accounts for the bursts of star formation after strong tidal shocks and the inefficiency of gas cooling in halos with virial temperatures Tvir 104 K. Our model reproduces the abundance, spatial distribution, and morphological segregation of the observed Galactic satellites. The results are insensitive to the redshift of reionization.


The Astrophysical Journal | 1997

Destruction of the galactic globular cluster system

Oleg Y. Gnedin; Jeremiah P. Ostriker

We investigate the dynamical evolution of the Galactic globular cluster system in considerably greater detail than has been done hitherto, finding that destruction rates are significantly larger than given by previous estimates. The general scheme (but not the detailed implementation) follows Aguilar, Hut, & Ostriker. For the evolution of individual clusters, we use a Fokker-Planck code including the most important physical processes governing the evolution: two-body relaxation, tidal truncation of clusters, compressive gravitational shocks while clusters pass through the Galactic disk, and tidal shocks due to passage close to the bulge. Gravitational shocks are treated comprehensively, using a recent result by Kundi? & Ostriker that the ?E2 shock-induced relaxation term, driving an additional dispersion of energies, is generally more important than the usual energy shift term ?E. Various functional forms of the correction factor are adopted to allow for the adiabatic conservation of stellar actions in a presence of transient gravitational perturbation. We use a recent compilation of the globular cluster positional and structural parameters, and a collection of radial velocity measurements. Two transverse to the line-of-sight velocity components were assigned randomly according to the two kinematic models for the cluster system (following the method of Aguilar, Hut, & Ostriker): one with an isotropic peculiar velocity distribution, corresponding to the present-day cluster population, and the other with the radially preferred peculiar velocities, similar to those of the stellar halo. We use the Ostriker & Caldwell and the Bahcall, Schmidt, & Soneira models for our Galaxy. For each cluster in our sample, we calculated its orbits over a Hubble time, starting from the present observed positions and assumed velocities. Medians of the resulting set of peri- and apogalactic distances and velocities are used then as an input for the Fokker-Planck code. Evolution of the cluster is followed up to its total dissolution due to a coherent action of all of the destruction mechanisms. The rate of destruction is then obtained as a median over all the cluster sample, in accord with Aguilar, Hut, & Ostriker. We find that the total destruction rate is much larger than that given by Aguilar, Hut, & Ostriker with more than half of the present clusters (52%-58% for the Ostriker & Caldwell model, and 75%-86% for the Bahcall, Schmidt, & Soneira model) destroyed in the next Hubble time. Alternatively put, the typical time to destruction is comparable to the typical age, a result that would follow from (but is not required by) an initially power law distribution of destruction times. We discuss some implications for a past history of the globular cluster system and the initial distribution of the destruction times, raising the possibility that the current population is but a very small fraction of the initial population with the remnants of the destroyed clusters constituting presently a large fraction of the spheroid (bulge + halo) stellar population.


Physics Reports | 2001

Neutrino Emission from Neutron Stars

Dmitry G. Yakovlev; A. D. Kaminker; Oleg Y. Gnedin

Abstract We review the main neutrino emission mechanisms in neutron star crusts and cores. Among them are the well-known reactions such as the electron–positron annihilation, plasmon decay, neutrino bremsstrahlung of electrons colliding with atomic nuclei in the crust, as well as the Urca processes and neutrino bremsstrahlung in nucleon–nucleon collisions in the core. We emphasize recent theoretical achievements, for instance, band structure effects in neutrino emission due to scattering of electrons in Coulomb crystals of atomic nuclei. We consider the standard composition of matter (neutrons, protons, electrons, muons, hyperons) in the core, and also the case of exotic constituents such as the pion or kaon condensates and quark matter. We discuss the reduction of the neutrino emissivities by nucleon superfluidity, as well as the specific neutrino emission produced by Cooper pairing of the superfluid particles. We also analyze the effects of strong magnetic fields on some reactions, such as the direct Urca process and the neutrino synchrotron emission of electrons. The results are presented in the form convenient for practical use. We illustrate the effects of various neutrino reactions on the cooling of neutron stars. In particular, the neutrino emission in the crust is critical in setting the initial thermal relaxation between the core and the crust. Finally, we discuss the prospects of exploring the properties of supernuclear matter by confronting cooling simulations with observations of the thermal radiation from isolated neutron stars.


The Astrophysical Journal | 2005

Formation of Globular Clusters in Hierarchical Cosmology

Andrey V. Kravtsov; Oleg Y. Gnedin

We study the formation of globular clusters in a Milky Way-size galaxy using a high-resolution cosmological simulation. The clusters in our model form in the strongly baryon-dominated cores of supergiant molecular clouds in the gaseous disks of high-redshift galaxies. The properties of clusters are estimated using a physically motivated subgrid model of the isothermal cloud collapse. The first clusters in the simulation form at z ? 12, while we conjecture that the best conditions for globular cluster formation appear to be at z ~ 3-5. Most clusters form in the progenitor galaxies of the virial mass Mh > 109 M?, and the total mass of the cluster population is strongly correlated with the mass of its host galaxy: MGC = 3 ? 106 M?(Mh/1011 M?)1.1. This corresponds to a fraction ~2 ? 10-4 of the galactic baryons being in the form of globular clusters. In addition, the mass of the globular cluster population and the maximum cluster mass in a given region strongly correlate with the local average star formation rate. We find that the mass, size, and metallicity distributions of the globular cluster population identified in the simulation are remarkably similar to the corresponding distributions of the Milky Way globular clusters. We find no clear mass-metallicity or age-metallicity correlations for the old clusters. The zero-age mass function of globular clusters can be approximated by a power law dN/dM M-? with ? ? 2, in agreement with the mass function of young stellar clusters in starbursting galaxies. We discuss in detail the origin and universality of the globular cluster mass function. Our results indicate that globular clusters with properties similar to those of observed clusters can form naturally within dense gaseous disks at z 3 in the concordance ?CDM cosmology.


The Astrophysical Journal | 2006

A Curious Milky Way Satellite in Ursa Major

Daniel B. Zucker; Vasily Belokurov; N. W. Evans; Jan Kleyna; M. J. Irwin; M. I. Wilkinson; M. Fellhauer; D. M. Bramich; G. Gilmore; Heidi Jo Newberg; Brian Yanny; J. A. Smith; Paul C. Hewett; E. F. Bell; H.-W. Rix; Oleg Y. Gnedin; S. Vidrih; R. F. G. Wyse; Beth Willman; Eva K. Grebel; Donald P. Schneider; Timothy C. Beers; Alexei Yu. Kniazev; J. C. Barentine; Howard J. Brewington; J. Brinkmann; Mike Harvanek; Scott J. Kleinman; Jurek Krzesinski; Daniel C. Long

In this Letter, we study a localized stellar overdensity in the constellation of Ursa Major, first identified in Sloan Digital Sky Survey (SDSS) data and subsequently followed up with Subaru imaging. Its color-magnitude diagram (CMD) shows a well-defined subgiant branch, main sequence, and turnoff, from which we estimate a distance of ~30 kpc and a projected size of ~250 × 125 pc2. The CMD suggests a composite population with some range in metallicity and/or age. Based on its extent and stellar population, we argue that this is a previously unknown satellite galaxy of the Milky Way, hereby named Ursa Major II (UMa II) after its constellation. Using SDSS data, we find an absolute magnitude of MV ~ -3.8, which would make it the faintest known satellite galaxy. UMa IIs isophotes are irregular and distorted with evidence for multiple concentrations; this suggests that the satellite is in the process of disruption.


The Astrophysical Journal | 2005

THE ANISOTROPIC DISTRIBUTION OF GALACTIC SATELLITES

Andrew R. Zentner; Andrey V. Kravtsov; Oleg Y. Gnedin; Anatoly Klypin

We present a study of the spatial distribution of dwarf satellites (or subhalos) in galactic dark matter halos using dissipationless cosmological simulations of the concordance flat cold dark matter (CDM) model with vacuum energy. We find that subhalos are distributed anisotropically and are preferentially located along the major axes of the triaxial mass distributions of their hosts. The Kolmogorov-Smirnov probability for drawing our simulated subhalo sample from an isotropic distribution is PKS 1.5 × 10-4. An isotropic distribution of subhalos is thus not the correct null hypothesis for testing the CDM paradigm. The nearly planar distribution of observed Milky Way (MW) satellites is marginally consistent (probability 0.02) with being drawn randomly from the subhalo distribution in our simulations. Furthermore, if we select the subhalos likely to be luminous, we find a distribution that is consistent with the observed MW satellites. In fact, we show that subsamples of the subhalo population with a centrally concentrated radial distribution that is similar to that of the MW dwarfs typically exhibit a comparable degree of planarity. We explore the origin of the observed subhalo anisotropy and conclude that it is likely due to (1) the preferential accretion of satellites along filaments, often closely aligned with the major axis of the host halo, and (2) evolution of satellite orbits within the prolate, triaxial potentials typical of CDM halos. Agreement between predictions and observations requires the major axis of the outer dark matter halo of the Milky Way to be nearly perpendicular to the disk. We discuss possible observational tests of such disk-halo alignment with current large galaxy surveys.


The Astrophysical Journal | 2010

MODELING THE METALLICITY DISTRIBUTION OF GLOBULAR CLUSTERS

Alexander L. Muratov; Oleg Y. Gnedin

Observed metallicities of globular clusters reflect physical conditions in the interstellar medium of their high-redshift host galaxies. Globular cluster systems in most large galaxies display bimodal color and metallicity distributions, which are often interpreted as indicating two distinct modes of cluster formation. The metal-rich and metal-poor clusters have systematically different locations and kinematics in their host galaxies. However, the red and blue clusters have similar internal properties, such as their masses, sizes, and ages. It is therefore interesting to explore whether both metal-rich and metal-poor clusters could form by a common mechanism and still be consistent with the bimodal distribution. We present such a model, which prescribes the formation of globular clusters semi-analytically using galaxy assembly history from cosmological simulations coupled with observed scaling relations for the amount and metallicity of cold gas available for star formation. We assume that massive star clusters form only during mergers of massive gas-rich galaxies and tune the model parameters to reproduce the observed distribution in the Galaxy. A wide, but not the entire, range of model realizations produces metallicity distributions consistent with the data. We find that early mergers of smaller hosts create exclusively blue clusters, whereas subsequent mergers of more massive galaxies create both red and blue clusters. Thus, bimodality arises naturally as the result of a small number of late massive merger events. This conclusion is not significantly affected by the large uncertainties in our knowledge of the stellar mass and cold gas mass in high-redshift galaxies. The fraction of galactic stellar mass locked in globular clusters declines from over 10% at z > 3 to 0.1% at present.


The Astrophysical Journal | 2007

Velocity dispersion profiles of seven dwarf spheroidal galaxies

Matthew G. Walker; Mario Mateo; Edward W. Olszewski; Oleg Y. Gnedin; Xiao Wang; Bodhisattva Sen; Michael Woodroofe

We present stellar velocity dispersion profiles for seven Milky Way dwarf spheroidal (dSph) satellite galaxies. We have measured 8394 line-of-sight velocities (±2.5 km s-1) for 6804 stars from high-resolution spectra obtained at the Magellan and MMT telescopes. We combine these new data with previously published velocities to obtain the largest available kinematic samples, which include more than 5500 dSph members. All the measured dSphs have stellar velocity dispersion of order 10 km s-1 that remains approximately constant with distance from the dSph center, out to and in some cases beyond the radius at which the mean surface brightness falls to the background level. Assuming dSphs reside within dark matter halos characterized by the NFW density profile, we obtain reasonable fits to the empirical velocity dispersion profiles. These fits imply that, among the seven dSphs, Mvir ~ 108-109 M☉. The mass enclosed at a radius of 600 pc, the region common to all data sets, lies in the range (2-7) × 107 M☉.

Collaboration


Dive into the Oleg Y. Gnedin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Y. Potekhin

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hui Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anatoly Klypin

New Mexico State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge