Oleksii Kopylov
Technical University of Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Oleksii Kopylov.
Optics Express | 2014
Andrew Rafael Bañas; Oleksii Kopylov; Mark Jayson Villangca; Darwin Palima; Jesper Glückstad
Generalized Phase Contrast (GPC) is an efficient method for generating speckle-free contiguous optical distributions useful in diverse applications such as static beam shaping, optical manipulation and, recently, for excitation in two-photon optogenetics. GPC allows efficient utilization of typical Gaussian lasers in such applications using binary-only phase modulation. In this work, we experimentally verify previously derived conditions for photon-efficient light shaping with GPC [Opt. Express22(5), 5299 (2014)]. We demonstrate a compact implementation of GPC for creating practical illumination shapes that can find use in light-efficient industrial or commercial applications. Using a dynamic spatial light modulator, we also show simple and efficient beam shaping of reconfigurable shapes geared towards materials processing, biophotonics research and other contemporary applications. Our experiments give ~80% efficiency, ~3x intensity gain, and ~90% energy savings which are in good agreement with previous theoretical estimations.
Optics Express | 2015
Oleksii Kopylov; Andrew Rafael Bañas; Mark Jayson Villangca; Darwin Palima; Jesper Glückstad
Generalized Phase Contrast (GPC) is a versatile tool for efficiently rerouting and managing photon energy into speckle-free contiguous spatial light distributions. We have previously shown theoretically and numerically that a GPC Light Shaper shows robustness to shift in wavelength and can maintain both projection length scale and high efficiency over a range [0.75λ(0); 1.5λ(0)] with λ(0) as the characteristic design wavelength. With this performance across multiple wavelengths and the recent availability of tabletop supercontinuum lasers, GPC light shaping opens the possibility for creatively incorporating various multi-wavelength approaches into spatially shaped excitations that can enable new broadband light applications. We verify this new approach using a supercontinuum light source, interfaced with a compact GPC light shaper. Our experiments give ~70% efficiency, ~3x intensity gain, and ~85% energy savings, limited, however, by the illumination equipment, but still in very good agreement with theoretical and numerical predictions.
AIP Advances | 2015
Daisuke Iida; Ahmed Fadil; Yuntian Chen; Yiyu Ou; Oleksii Kopylov; Motoaki Iwaya; Tetsuya Takeuchi; Satoshi Kamiyama; Isamu Akasaki; Haiyan Ou
We report internal quantum efficiency enhancement of thin p-GaN green quantum-well structure using self-assembled Ag nanoparticles. Temperature dependent photoluminescence measurements are conducted to determine the internal quantum efficiency. The impact of excitation power density on the enhancement factor is investigated. We obtain an internal quantum efficiency enhancement by a factor of 2.3 at 756 W/cm2, and a factor of 8.1 at 1 W/cm2. A Purcell enhancement up to a factor of 26 is estimated by fitting the experimental results to a theoretical model for the efficiency enhancement factor.
Applied Physics Letters | 2012
Roza Shirazi; Oleksii Kopylov; András Kovács; Beata Kardynal
In this letter, we investigate exciton recombination in InP/ZnS core-shell colloidal nanocrystals over a wide temperature range. Over the entire range between room temperature and liquid helium temperature, multi-exponential exciton decay curves are observed and well explained by the presence of bright and dark exciton states, as well as defect states. Two different types of defect are present: one located at the core-shell interface and the other on the surface of the nanocrystal. Based on the temperature dependent contributions of all four states to the total photoluminescence signal, we estimate that the four states are distributed within a 20 meV energy band in nanocrystals that emit at 1.82 eV.
Proceedings of SPIE | 2014
Elizaveta Semenova; Irina Kulkova; Shima Kadkhodazadeh; Daniele Barettin; Oleksii Kopylov; Alberto Cagliani; Kristoffer Almdal; Morten Willatzen; Kresten Yvind
The development of epitaxial technology for the fabrication of quantum dot (QD) gain material operating in the 1.55 μm wavelength range is a key requirement for the evolvement of telecommunication. High performance QD material demonstrated on GaAs only covers the wavelength region 1-1.35 μm. In order to extract the QD benefits for the longer telecommunication wavelength range the technology of QD fabrication should be developed for InP based materials. In our work, we take advantage of both QD fabrication methods Stranski-Krastanow (SK) and selective area growth (SAG) employing block copolymer lithography. Due to the lower lattice mismatch of InAs/InP compared to InAs/GaAs, InP based QDs have a larger diameter and are shallower compared to GaAs based dots. This shape causes low carrier localization and small energy level separation which leads to a high threshold current, high temperature dependence, and low laser quantum efficiency. Here, we demonstrate that with tailored growth conditions, which suppress surface migration of adatoms during the SK QD formation, much smaller base diameter (13.6nm versus 23nm) and an improved aspect ratio are achieved. In order to gain advantage of non-strain dependent QD formation, we have developed SAG, for which the growth occurs only in the nano-openings of a mask covering the wafer surface. In this case, a wide range of QD composition can be chosen. This method yields high purity material and provides significant freedom for reducing the aspect ratio of QDs with the possibility to approach an ideal QD shape.
Proceedings of SPIE | 2015
Mark Jayson Villangca; Andrew Rafael Bañas; Oleksii Kopylov; Darwin Palima; Jesper Glückstad
We have previously proposed and demonstrated optimal beam shaping of contiguous light patterns using the Generalized Phase Contrast (GPC) method. The concept has been packaged into a compact add-on module, which we call the GPC light shaper (LS) that can be conveniently integrated to existing optical setups requiring optimal illumination of devices such as spatial light modulators (SLMs). In this work, we integrated the GPC LS into a holography setup to generate more intense focal spots and extended patterns. The output of the holography setup with the GPC LS is compared with a similar setup but using only hard-truncated beams. Our results show that, we get a ~3x gain in intensity of the generated patterns when using GPC LS.
Proceedings of SPIE | 2015
Mark Jayson Villangca; Andrew Rafael Bañas; Oleksii Kopylov; Darwin Palima; Jesper Glückstad
We have previously demonstrated on-demand dynamic coupling of an optically manipulated wave-guided optical waveguide (WOW) using diffractive techniques on a “point and shoot” approach. In this work, the generation of the coupling focal spots is done in real-time following the position of the WOW. Object-tracking routine has been added in the trapping program to get the position of the WOW. This approach allows continuous coupling of light through the WOWs which may be useful in some application. In addition, we include a GPC light shaper module in the holography setup to efficiently illuminate the spatial light modulator (SLM). The ability to switch from on-demand to continuous addressing with efficient illumination leverages our WOWs for potential applications in stimulation and nonlinear optics.
Optical Data Processing and Storage | 2015
Andrew Rafael Bañas; Oleksii Kopylov; Mark Jayson Villangca; Darwin Palima; Jesper Glückstad
Abstract Generalized Phase Contrast (GPC) is an efficient method for generating speckle-free contiguous optical distributions. It has been used in applications such as optical manipulation, microscopy, optical cryptography and more contemporary biological applications such as twophoton optogenetics or neurophotonics.Among its diverse applications, simple efficient shapes for illumination or excitation happen to have the biggest potential use beyond the research experiments. Hence, we preset recent GPC developments geared towards these applications.We start by presenting the theory needed for designing an optimized GPC light shaper (GPC LS). A compact GPC LS implementation based on this design is then used to demonstrate the GPC LS’s benefits on typical applications where lasers have to be shaped into a particular pattern. Both simulations and experiments show ~80% efficiency, ~3x intensity gain and ~90% energy savings. As an application example,we show how computer generated hologram reconstruction can be up to three times brighter or how the number of optical spots can be multiplied threefold while maintaining the brightness. Finally, to demonstrate its potential for biomedical multispectral applications, we demonstrate efficient light shaping of a supercontinuum laser over the visible wavelength range.
Proceedings of SPIE | 2013
Oleksii Kopylov; Alexander Huck; Roza Shirazi; Kresten Yvind; Beata Kardynal
We demonstrate light color conversion in patterned InGaN light-emitting diodes (LEDs), which is enhanced via non-radiative exciton resonant energy transfer (RET) from the electrically driven diode to colloidal semiconductor nanocrystals (NCs). Patterning of the diode is essential for the coupling between a quantum well (QW) and NCs, because the distance between the QW and NCs is a main and very critical factor of RET. Moreover, a proper design of the pattern can enhance light extraction.
Physica Status Solidi (c) | 2012
Olli Svensk; Sami Suihkonen; Sakari Sintonen; Oleksii Kopylov; Roza Shirazi; Harri Lipsanen; Markku Sopanen; Beata Kardynal