Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oleksiy Kovtun is active.

Publication


Featured researches published by Oleksiy Kovtun.


Traffic | 2014

The Vps35 D620N mutation linked to Parkinson's disease disrupts the cargo sorting function of retromer

Jordan Follett; Suzanne J. Norwood; Nicholas A. Hamilton; Megha Mohan; Oleksiy Kovtun; Stephanie Tay; Yang Zhe; Stephen A. Wood; George D. Mellick; Peter A. Silburn; Brett M. Collins; Andrea Bugarcic; Rohan D. Teasdale

The retromer is a trimeric cargo‐recognition protein complex composed of Vps26, Vps29 and Vps35 associated with protein trafficking within endosomes. Recently, a pathogenic point mutation within the Vps35 subunit (D620N) was linked to the manifestation of Parkinsons disease (PD). Here, we investigated details underlying the molecular mechanism by which the D620N mutation in Vps35 modulates retromer function, including examination of retromers subcellular localization and its capacity to sort cargo. We show that expression of the PD‐linked Vps35 D620N mutant redistributes retromer‐positive endosomes to a perinuclear subcellular localization and that these endosomes are enlarged in both model cell lines and fibroblasts isolated from a PD patient. Vps35 D620N is correctly folded and binds Vps29 and Vps26A with the same affinity as wild‐type Vps35. While PD‐linked point mutant Vps35 D620N interacts with the cation‐independent mannose‐6‐phosphate receptor (CI‐M6PR), a known retromer cargo, we find that its expression disrupts the trafficking of cathepsin D, a CI‐M6PR ligand and protease responsible for degradation of α‐synuclein, a causative agent of PD. In summary, we find that the expression of Vps35 D620N leads to endosomal alterations and trafficking defects that may partly explain its action in PD.


Nature Biotechnology | 2009

Species-independent translational leaders facilitate cell-free expression

Sergei Mureev; Oleksiy Kovtun; Uyen T. T. Nguyen; Kirill Alexandrov

Cell-free protein synthesis enables the rapid production and engineering of recombinant proteins. Existing cell-free systems differ substantially from each other with respect to efficiency, scalability and the ability to produce functional eukaryotic proteins. Here we describe species-independent translational sequences (SITS) that mediate efficient cell-free protein synthesis in multiple prokaryotic and eukaryotic systems, presumably through bypassing the early translation initiation factors. We use these leaders in combination with targeted suppression of the endogenous Leishmania tarentolae mRNAs to create a cell-free system based on this protozoan. The system can be directly programmed with unpurified PCR products, enabling rapid generation of large protein libraries and protein variants. L. tarentolae extract can produce up to 300 μg/ml of recombinant protein in 2 h. We further demonstrate that protein-protein and protein–small molecule interactions can be quantitatively analyzed directly in the translation mixtures using fluorescent (cross-) correlation spectroscopy.


Protein Science | 2010

Structural and thermodynamic analysis of the GFP:GFP-nanobody complex

Marta H. Kubala; Oleksiy Kovtun; Kirill Alexandrov; Brett M. Collins

The green fluorescent protein (GFP)‐nanobody is a single‐chain VHH antibody domain developed with specific binding activity against GFP and is emerging as a powerful tool for isolation and cellular engineering of fluorescent protein fusions in many different fields of biological research. Using X‐ray crystallography and isothermal titration calorimetry, we determine the molecular details of GFP:GFP‐nanobody complex formation and explain the basis of high affinity and at the same time high specificity of protein binding. Although the GFP‐nanobody can also bind YFP, it cannot bind the closely related CFP or other fluorescent proteins from the mFruit series. CFP differs from GFP only within the central chromophore and at one surface amino acid position, which lies in the binding interface. Using this information, we have engineered a CFP variant (I146N) that is also able to bind the GFP‐nanobody with high affinity, thus extending the toolbox of genetically encoded fluorescent probes that can be isolated using the GFP‐nanobody.


eLife | 2014

Single-molecule analysis reveals self assembly and nanoscale segregation of two distinct cavin subcomplexes on caveolae.

Yann Gambin; Nicholas Ariotti; Kerrie Ann McMahon; Michele Bastiani; Emma Sierecki; Oleksiy Kovtun; Mark E. Polinkovsky; Astrid Magenau; WooRam Jung; Satomi Okano; Yong Zhou; Natalya Leneva; Sergey Mureev; Wayne A. Johnston; Katharina Gaus; John F. Hancock; Brett M. Collins; Kirill Alexandrov; Robert G. Parton

In mammalian cells three closely related cavin proteins cooperate with the scaffolding protein caveolin to form membrane invaginations known as caveolae. Here we have developed a novel single-molecule fluorescence approach to directly observe interactions and stoichiometries in protein complexes from cell extracts and from in vitro synthesized components. We show that up to 50 cavins associate on a caveola. However, rather than forming a single coat complex containing the three cavin family members, single-molecule analysis reveals an exquisite specificity of interactions between cavin1, cavin2 and cavin3. Changes in membrane tension can flatten the caveolae, causing the release of the cavin coat and its disassembly into separate cavin1-cavin2 and cavin1-cavin3 subcomplexes. Each of these subcomplexes contain 9 ± 2 cavin molecules and appear to be the building blocks of the caveolar coat. High resolution immunoelectron microscopy suggests a remarkable nanoscale organization of these separate subcomplexes, forming individual striations on the surface of caveolae. DOI: http://dx.doi.org/10.7554/eLife.01434.001


Journal of Cell Science | 2015

Cavin family proteins and the assembly of caveolae

Oleksiy Kovtun; Vikas A. Tillu; Nicholas Ariotti; Robert G. Parton; Brett M. Collins

ABSTRACT Caveolae are an abundant feature of the plasma membrane in many cells. Until recently, they were generally considered to be membrane invaginations whose formation primarily driven by integral membrane proteins called caveolins. However, the past decade has seen the emergence of the cavin family of peripheral membrane proteins as essential coat components and regulators of caveola biogenesis. In this Commentary, we summarise recent data on the role of cavins in caveola formation, highlighting structural studies that provide new insights into cavin coat assembly. In mammals, there are four cavin family members that associate through homo- and hetero-oligomerisation to form distinct subcomplexes on caveolae, which can be released into the cell in response to stimuli. Studies from several labs have provided a better understanding of cavin stoichiometry and the molecular basis for their oligomerisation, as well as identifying interactions with membrane phospholipids that may be important for caveola function. We propose a model in which coincident, low-affinity electrostatically controlled protein–protein and protein–lipid interactions allow the formation of caveolae, generating a meta-stable structure that can respond to plasma membrane stress by release of cavins.


Methods | 2011

Leishmania cell-free protein expression system

Oleksiy Kovtun; Sergey Mureev; WoomRam Jung; Marta H. Kubala; Wayne A. Johnston; Kirill Alexandrov

Cell-free protein expression is an important tool for a rapid production, engineering and labeling of recombinant proteins. However the complex protocols for preparation of eukaryotic cell-free protein expression systems result in high manufacturing costs and limit their utility. Recently we reported a novel cell-free expression system based on the lysate of a fermentable protozoan Leishmania tarentolae. Herein we describe a protocol for high throughput protein expression using Leishmania cell-free lysate. The protocol combines PCR-based synthesis and engineering of translation templates with a combined transcription-translation system. The protocol is adapted to multiwell plate format and allows translation of large protein libraries. In the presented example we translate in vitro and isolate a nearly complete complement of mammalian Rab GTPases. Further applications and developments of the system are discussed.


Developmental Cell | 2014

Structural Insights into the Organization of the Cavin Membrane Coat Complex

Oleksiy Kovtun; Vikas A. Tillu; WooRam Jung; Natalya Leneva; Nicholas Ariotti; Natasha Chaudhary; Ramya A. Mandyam; Charles Ferguson; Garry P. Morgan; Wayne A. Johnston; Stephen J. Harrop; Kirill Alexandrov; Robert G. Parton; Brett M. Collins

Caveolae are cell-surface membrane invaginations that play critical roles in cellular processes including signaling and membrane homeostasis. The cavin proteins, in cooperation with caveolins, are essential for caveola formation. Here we show that a minimal N-terminal domain of the cavins, termed HR1, is required and sufficient for their homo- and hetero-oligomerization. Crystal structures of the mouse cavin1 and zebrafish cavin4a HR1 domains reveal highly conserved trimeric coiled-coil architectures, with intersubunit interactions that determine the specificity of cavin-cavin interactions. The HR1 domain contains a basic surface patch that interacts with polyphosphoinositides and coordinates with additional membrane-binding sites within the cavin C terminus to facilitate membrane association and remodeling. Electron microscopy of purified cavins reveals the existence of large assemblies, composed of a repeating rod-like structural element, and we propose that these structures polymerize through membrane-coupled interactions to form the unique striations observed on the surface of caveolae in vivo.


PLOS ONE | 2010

Towards the Construction of Expressed Proteomes Using a Leishmania tarentolae Based Cell-Free Expression System

Oleksiy Kovtun; Sergey Mureev; Wayne A. Johnston; Kirill Alexandrov

The adaptation of organisms to a parasitic life style is often accompanied by the emergence of novel biochemical pathways absent in free-living organisms. As a result, the genomes of specialized parasitic organisms often code for a large number (>50%) of proteins with no detectable homology or predictable function. Although understanding the biochemical properties of these proteins and their roles in parasite biogenesis is the next challenge of molecular parasitology, analysis tools developed for free-living organisms are often inadequate for this purpose. Here we attempt to solve some of these problems by developing a methodology for the rapid production of expressed proteomes in cell-free systems based on parasitic organisms. To do so we take advantage of Species Independent Translational Sequences (SITS), which can efficiently mediate translation initiation in any organism. Using these sequences we developed a single-tube in vitro translation system based on the parasitic protozoan Leishmania tarentolae. We demonstrate that the system can be primed directly with SITS containing templates constructed by overlap extension PCR. To test the systems we simultaneously amplified 31 of L. tarentolaes putative translation initiation factors and phosphatases directly from the genomic DNA and subjected them to expression, purification and activity analysis. All of the amplified products produced soluble recombinant proteins, and putative phosphatases could be purified to at least 50% purity in one step. We further compared the ability of L. tarentolae and E. coli based cell-free systems to express a set of mammalian, L. tarentolae and Plasmodium falciparum Rab GTPases in functional form. We demonstrate that the L. tarentolae cell-free system consistently produced higher quality proteins than E. coli-based system. The differences were particularly pronounced in the case of open reading frames derived from P. falciparum. The implications of these developments are discussed.


Journal of Biological Chemistry | 2014

Structural Basis for Different Phosphoinositide Specificities of the PX Domains of Sorting Nexins Regulating G-protein Signaling

Caroline Mas; Suzanne J. Norwood; Andrea Bugarcic; Genevieve Kinna; Natalya Leneva; Oleksiy Kovtun; Rajesh Ghai; Lorena E. Ona Yanez; Jasmine L. Davis; Rohan D. Teasdale; Brett M. Collins

Background: RGS-PX proteins are regulators of signaling and trafficking within the endosomal system. Results: A structural basis for membrane interactions of RGS-PX proteins is established. Conclusion: The four mammalian paralogues display different membrane interaction properties. Significance: RGS-PX proteins possess a conserved functional architecture in all eukaryotes. Sorting nexins (SNXs) or phox homology (PX) domain containing proteins are central regulators of cell trafficking and signaling. A subfamily of PX domain proteins possesses two unique PX-associated domains, as well as a regulator of G protein-coupled receptor signaling (RGS) domain that attenuates Gαs-coupled G protein-coupled receptor signaling. Here we delineate the structural organization of these RGS-PX proteins, revealing a protein family with a modular architecture that is conserved in all eukaryotes. The one exception to this is mammalian SNX19, which lacks the typical RGS structure but preserves all other domains. The PX domain is a sensor of membrane phosphoinositide lipids and we find that specific sequence alterations in the PX domains of the mammalian RGS-PX proteins, SNX13, SNX14, SNX19, and SNX25, confer differential phosphoinositide binding preferences. Although SNX13 and SNX19 PX domains bind the early endosomal lipid phosphatidylinositol 3-phosphate, SNX14 shows no membrane binding at all. Crystal structures of the SNX19 and SNX14 PX domains reveal key differences, with alterations in SNX14 leading to closure of the binding pocket to prevent phosphoinositide association. Our findings suggest a role for alternative membrane interactions in spatial control of RGS-PX proteins in cell signaling and trafficking.


Biochemistry | 2014

Isolation and structural and pharmacological characterization of α-elapitoxin-Dpp2d, an amidated three finger toxin from black mamba venom.

Ching-I Anderson Wang; Timothy Reeks; Irina Vetter; Irene Vergara; Oleksiy Kovtun; Richard J. Lewis; Paul F. Alewood; Thomas Durek

We isolated a novel, atypical long-chain three-finger toxin (TFT), α-elapitoxin-Dpp2d (α-EPTX-Dpp2d), from black mamba (Dendroaspis polylepis polylepis) venom. Proteolytic digestion with trypsin and V8 protease, together with MS/MS de novo sequencing, indicated that the mature toxin has an amidated C-terminal arginine, a posttranslational modification rarely observed for snake TFTs. α-EPTX-Dpp2d was found to potently inhibit α7 neuronal nicotinic acetylcholine receptors (nAChR; IC₅₀, 58 ± 24 nM) and muscle-type nAChR (IC₅₀, 114 ± 37 nM) but did not affect α3β2 and α3β4 nAChR isoforms at 1 μM concentrations. Competitive radioligand binding assays demonstrated that α-EPTX-Dpp2d competes with epibatidine binding to the Lymnea stagnalis acetylcholine-binding protein (Ls-AChBP; IC₅₀, 4.9 ± 2.3 nM). The activity profile and binding data are reminiscent of classical long-chain TFTs with a free carboxyl termini, suggesting that amidation does not significantly affect toxin selectivity. The crystal structure of α-EPTX-Dpp2d was determined at 1.7 Å resolution and displayed a dimeric toxin assembly with each monomer positioned in an antiparallel orientation. The dimeric structure is stabilized by extensive intermolecular hydrogen bonds and electrostatic interactions, which raised the possibility that the toxin may exist as a noncovalent homodimer in solution. However, chemical cross-linking and size-exclusion chromatography coupled with multiangle laser light scattering (MALLS) data indicated that the toxin is predominantly monomeric under physiological conditions. Because of its high potency and selectivity, we expect this toxin to be a valuable pharmacological tool for studying the structure and function of nAChRs.

Collaboration


Dive into the Oleksiy Kovtun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vikas A. Tillu

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Sergey Mureev

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natalya Leneva

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Nicholas Ariotti

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

WooRam Jung

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge