Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olena Taratula is active.

Publication


Featured researches published by Olena Taratula.


Molecular Pharmaceutics | 2013

A Multifunctional Theranostic Platform Based on Phthalocyanine-Loaded Dendrimer for Image-Guided Drug Delivery and Photodynamic Therapy

Olena Taratula; Canan Schumann; Michael a Naleway; addison J Pang; Kaitlyn J. Chon; Oleh Taratula

Owing to the outstanding near-infrared (NIR) optical properties, phthalocyanines (Pc) have promising potential as theranostic agents for fluorescence image-guided drug delivery and noninvasive treatment of deep tumors by photodynamic therapy (PDT). Nevertheless, clinical application of phthalocyanines is substantially limited by poor water solubility, aggregation and insufficient selectivity for cancer cells. To address these issues, we have developed a novel dendrimer-based theranostic platform for tumor-targeted delivery of phthalocyanines. The preparation procedure involved the modification of the Pc molecule with a hydrophobic linker, which significantly enhances physical encapsulation of the hydrophobic drug into a generation 4 polypropylenimine (PPI G4) dendrimer. In order to improve biocompatibility and tumor-targeted delivery, the surface of the resulting Pc-PPIG4 complexes was additionally modified with poly(ethylene glycol) (PEG) and luteinizing hormone-releasing hormone (LHRH) peptide, respectively. The developed nanocarriers have an average diameter of 62.3 nm and narrow size distribution with a polydispersity index of 0.100. The drug encapsulation efficiency was 20% w/w, and the synthesized phthalocyanine derivative entrapped in the dendrimer-based nanocarrier exhibits a distinct NIR absorption (700 nm) and fluorescence emission (710 and 815 nm), required for an efficient PDT and fluorescence imaging. It was demonstrated that subcellular localization in vitro and organ distribution in vivo of the developed nanocarrier can be determined based on the intrinsic fluorescence properties of encapsulated phthalocyanine, validating its role as an imaging agent. The imaging experiments revealed that the LHRH targeted nanocarrier is capable of an efficient internalization into cancer cells as well as tumor accumulation when intravenously administered into mice. Finally, the prepared formulation exhibited low dark cytotoxicity (IC50=28 μg/mL) while light irradiation of the cancer cells transfected with the developed theranostic agents resulted in significant PDT effects (IC50=0.9 μg/mL) through excessive generation of toxic reactive oxygen species. Thus, the obtained results demonstrated significant potential of the designed dendrimer-based nanocarrier as an efficient NIR theranostic agent.


International Journal of Pharmaceutics | 2013

Multifunctional Nanomedicine Platform for Concurrent Delivery of Chemotherapeutic Drugs and Mild Hyperthermia to Ovarian Cancer Cells

Olena Taratula; Raj Kumar Dani; Canan Schumann; Hong Xu; Andrew Wang; Han Song; Pallavi Dhagat; Oleh Taratula

A multifunctional tumor-targeting delivery system was developed and evaluated for an efficient treatment of drug-resistant ovarian cancer by combinatorial therapeutic modality based on chemotherapy and mild hyperthermia. The engineered iron oxide nanoparticle (IONPs)-based nanocarrier served as an efficient delivery vehicle for doxorubicin and provided the ability to heat cancer cells remotely upon exposure to an alternating magnetic field (AMF). The nanocarrier was additionally modified with polyethylene glycol and LHRH peptide to improve its biocompatibility and ability to target tumor cells. The synthesized delivery system has an average size of 97.1 nm and a zeta potential close to zero, both parameters favorable for increased stability in biological media and decreased elimination by the immune system. The nanocarrier demonstrated faster drug release in acidic conditions that mimic the tumor environment. It was also observed that the LHRH targeted delivery system could effectively enter drug resistant ovarian cancer cells, and the fate of doxorubicin was tracked with fluorescence microscope. Mild hyperthermia (40°C) generated by IONPs under exposure to AMF synergistically increased the cytotoxicity of doxorubicin delivered by the developed nanocarrier to cancer cells. Thus, the developed IONPs-based delivery system has high potential in the effective treatment of ovarian cancer by combinatorial approach.


IEEE Sensors Journal | 2009

A ZnO Nanostructure-Based Quartz Crystal Microbalance Device for Biochemical Sensing

Pavel Ivanoff Reyes; Zheng Zhang; Hanhong Chen; Ziqing Duan; Jian Zhong; Gaurav Saraf; Yicheng Lu; Olena Taratula; Elena Galoppini; Nada N. Boustany

We report a ZnO-nanostructure-based quartz crystal microbalance (nano-QCM) device for biosensing applications. ZnO nanotips are directly grown on the sensing area of a conventional QCM by metalorganic chemical vapor deposition (MOCVD). Scanning electron microscopy (SEM) shows that the ZnO nanotips are dense and uniformly aligned along the normal to the substrate surface. By using superhydrophilic nano-ZnO surface, more than tenfold increase in mass loading sensitivity of the nano-QCM device is achieved over the conventional QCM. The ZnO nanotip arrays on the nano-QCM are functionalized. The selective immobilization and hybridization of DNA oligonucleotide molecules are confirmed by fluorescence microscopy of the nano-QCM sensing areas.


International Journal of Nanomedicine | 2015

Phthalocyanine-loaded graphene nanoplatform for imaging-guided combinatorial phototherapy

Olena Taratula; Mehulkumar Patel; Canan Schumann; Michael a Naleway; addison J Pang; Huixin He; Oleh Taratula

We report a novel cancer-targeted nanomedicine platform for imaging and prospect for future treatment of unresected ovarian cancer tumors by intraoperative multimodal phototherapy. To develop the required theranostic system, novel low-oxygen graphene nanosheets were chemically modified with polypropylenimine dendrimers loaded with phthalocyanine (Pc) as a photosensitizer. Such a molecular design prevents fluorescence quenching of the Pc by graphene nanosheets, providing the possibility of fluorescence imaging. Furthermore, the developed nanoplatform was conjugated with poly(ethylene glycol), to improve biocompatibility, and with luteinizing hormone-releasing hormone (LHRH) peptide, for tumor-targeted delivery. Notably, a low-power near-infrared (NIR) irradiation of single wavelength was used for both heat generation by the graphene nanosheets (photothermal therapy [PTT]) and for reactive oxygen species (ROS)-production by Pc (photodynamic therapy [PDT]). The combinatorial phototherapy resulted in an enhanced destruction of ovarian cancer cells, with a killing efficacy of 90%–95% at low Pc and low-oxygen graphene dosages, presumably conferring cytotoxicity to the synergistic effects of generated ROS and mild hyperthermia. An animal study confirmed that Pc loaded into the nanoplatform can be employed as a NIR fluorescence agent for imaging-guided drug delivery. Hence, the newly developed Pc-graphene nanoplatform has the significant potential as an effective NIR theranostic probe for imaging and combinatorial phototherapy.


Nanomedicine: Nanotechnology, Biology and Medicine | 2015

ROS-Induced Nanotherapeutic Approach for Ovarian Cancer Treatment Based on the Combinatorial Effect of Photodynamic Therapy and DJ-1 Gene Suppression

Canan Schumann; Olena Taratula; Oleh Khalimonchuk; Amy L. Palmer; Lauren M. Cronk; Carson V. Jones; Cesar A. Escalante; Oleh Taratula

UNLABELLED This study represents a novel approach for intraoperative ovarian cancer treatment based on the combinatorial effect of a targeted photodynamic therapy (PDT) associated with suppression of the DJ-1 protein, one of the key players in the ROS defense of cancer cells. To assess the potential of the developed therapy, dendrimer-based nanoplatforms for cancer-targeted delivery of near-infrared photosensitizer, phthalocyanine, and DJ-1 siRNA have been constructed. In vitro studies revealed that therapeutic efficacy of the combinatorial approach was enhanced when compared to PDT alone and this enhancement was more pronounced in ovarian carcinoma cells, which are characterized by higher basal levels of DJ-1 protein. Moreover, the ovarian cancer tumors exposed to a single dose of combinatorial therapy were completely eradicated from the mice and the treated animals showed no evidence of cancer recurrence. Thus, the developed therapeutic approach can be potentially employed intraoperatively to eradicate unresactable cancer cells. FROM THE CLINICAL EDITOR The complete clearance of microscopic residual tumor cells during excision surgery is important to improve survival of the patient. In this interesting paper, the authors developed a novel approach using targeted photodynamic therapy (PDT), combining a photosensitizer, phthalocyanine, and DJ-1 siRNA for the treatment of ovarian cancer. The data showed that this approach increased cancer cell killing and may pave way for future clinical studies.


Molecular Pharmaceutics | 2016

Mechanistic Nanotherapeutic Approach Based on siRNA-Mediated DJ-1 Protein Suppression for Platinum-Resistant Ovarian Cancer

Canan Schumann; Stephanie Kuan Chan; Oleh Khalimonchuk; Shannon Khal; Vitaliya Moskal; Vidhi Shah; Adam W. G. Alani; Olena Taratula; Oleh Taratula

We report an efficient therapeutic modality for platinum resistant ovarian cancer based on siRNA-mediated suppression of a multifunctional DJ-1 protein that is responsible for the proliferation, growth, invasion, oxidative stress, and overall survival of various cancers. The developed therapeutic strategy can work alone or in concert with a low dose of the first line chemotherapeutic agent cisplatin, to elicit a maximal therapeutic response. To achieve an efficient DJ-1 knockdown, we constructed the polypropylenimine dendrimer-based nanoplatform targeted to LHRH receptors overexpressed on ovarian cancer cells. The quantitative PCR and Western immunoblotting analysis revealed that the delivered DJ-1 siRNA downregulated the expression of targeted mRNA and corresponding protein by more than 80% in various ovarian cancer cells. It was further demonstrated that siRNA-mediated DJ-1 suppression dramatically impaired proliferation, viability, and migration of the employed ovarian cancer cells. Finally, the combinatorial approach led to the most pronounced therapeutic response in all the studied cell lines, outperforming both siRNA-mediated DJ-1 knockdown and cisplatin treatment alone. It is noteworthy that the platinum-resistant cancer cells (A2780/CDDP) with the highest basal level of DJ-1 protein are most susceptible to the developed therapy and this susceptibility declines with decreasing basal levels of DJ-1. Finally, we interrogate the molecular underpinnings of the DJ-1 knockdown effects in the treatment of the ovarian cancer cells. By using various experimental techniques, it was revealed that DJ-1 depletion (1) decreases the activity of the Akt pathway, thereby reducing cellular proliferation and migration and increasing the antiproliferative effect of cisplatin on ovarian cancer cells; (2) enhances the activity of p53 tumor suppressor protein therefore restoring cell cycle arrest functionality and upregulating the Bax-caspase pathway, triggering cell death; and (3) weakens the cellular defense mechanisms against inherited oxidative stress thereby increasing toxic intracellular radicals and amplifying the reactive oxygen species created by the administration of cisplatin.


Theranostics | 2018

A Tumor-Activatable Theranostic Nanomedicine Platform for NIR Fluorescence-Guided Surgery and Combinatorial Phototherapy

Xiaoning Li; Canan Schumann; Hassan A. Albarqi; Christopher J. Lee; Adam W. G. Alani; Shay Bracha; Milan Milovancev; Olena Taratula; Oleh Taratula

Fluorescence image-guided surgery combined with intraoperative therapeutic modalities has great potential for intraoperative detection of oncologic targets and eradication of unresectable cancer residues. Therefore, we have developed an activatable theranostic nanoplatform that can be used concurrently for two purposes: (1) tumor delineation with real-time near infrared (NIR) fluorescence signal during surgery, and (2) intraoperative targeted treatment to further eliminate unresected disease sites by non-toxic phototherapy. Methods: The developed nanoplatform is based on a single agent, silicon naphthalocyanine (SiNc), encapsulated in biodegradable PEG-PCL (poly (ethylene glycol)-b-poly(ɛ-caprolactone)) nanoparticles. It is engineered to be non-fluorescent initially via dense SiNc packing within the nanoparticles hydrophobic core, with NIR fluorescence activation after accumulation at the tumor site. The activatable nanoplatform was evaluated in vitro and in two different murine cancer models, including an ovarian intraperitoneal metastasis-mimicking model. Furthermore, fluorescence image-guided surgery mediated by this nanoplatform was performed on the employed animal models using a Fluobeam® 800 imaging system. Finally, the phototherapeutic efficacy of the developed nanoplatform was demonstrated in vivo. Results: Our in vitro data suggest that the intracellular environment of cancer cells is capable of compromising the integrity of self-assembled nanoparticles and thus causes disruption of the tight dye packing inside the hydrophobic cores and activation of the NIR fluorescence. Animal studies demonstrated accumulation of activatable nanoparticles at the tumor site following systemic administration, as well as release and fluorescence recovery of SiNc from the polymeric carrier. It was also validated that the developed nanoparticles are compatible with the intraoperative imaging system Fluobeam® 800, and nanoparticle-mediated image-guided surgery provides successful resection of cancer tumors. Finally, in vivo studies revealed that combinatorial phototherapy mediated by the nanoparticles could efficiently eradicate chemoresistant ovarian cancer tumors. Conclusion: The revealed properties of the activatable nanoplatform make it highly promising for further application in clinical image-guided surgery and combined phototherapy, facilitating a potential translation to clinical studies.


Nanomedicine: Nanotechnology, Biology and Medicine | 2017

Phototheranostic nanoplatform based on a single cyanine dye for image-guided combinatorial phototherapy

Tony Duong; Xiaoning Li; Bona Yang; Canan Schumann; Hassan A. Albarqi; Olena Taratula; Oleh Taratula

This study represents a novel phototheranostic nanoplatform based on the near-infrared (NIR) heptamethine cyanine dye, IR775, which is capable of concurrent real-time fluorescence imaging and cancer eradication with combinatorial phototherapy. To achieve water solubility and enhance tumor delivery, the hydrophobic IR775 dye was loaded into a biocompatible polymeric nanoparticle with a diameter of ~40nm and slightly negative surface charge (-2.34mV). The nanoparticle-encapsulated hydrophobic IR775 dye (IR775-NP) is characterized by an enhanced fluorescence quantum yield (16%) when compared to the water soluble analogs such as ICG (2.7%) and IR783 (8%). Furthermore, the developed IR-775-NP efficiently generates both heat and reactive oxygen species under NIR light irradiation, eradicating cancer cells in vitro. Finally, animal studies revealed that the IR775-NP accumulates in cancer tumors after systemic administration, efficiently delineates them with NIR fluorescence signal and completely eradicates chemo resistant cancer tissue after a single dose of combinatorial phototherapy.


Mini-reviews in Medicinal Chemistry | 2017

LHRH-Targeted Drug Delivery Systems for Cancer Therapy

Xiaoning Li; Oleh Taratula; Olena Taratula; Canan Schumann; Tamara Minko

Targeted delivery of therapeutic and diagnostic agents to cancer sites has significant potential to improve the therapeutic outcome of treatment while minimizing severe side effects. It is widely accepted that decoration of the drug delivery systems with targeting ligands that bind specifically to the receptors on the cancer cells is a promising strategy that may substantially enhance accumulation of anticancer agents in the tumors. Due to the transformed cellular nature, cancer cells exhibit a variety of overexpressed cell surface receptors for peptides, hormones, and essential nutrients, providing a significant number of target candidates for selective drug delivery. Among others, luteinizing hormonereleasing hormone (LHRH) receptors are overexpressed in the majority of cancers, while their expression in healthy tissues, apart from pituitary cells, is limited. The recent studies indicate that LHRH peptides can be employed to efficiently guide anticancer and imaging agents directly to cancerous cells, thereby increasing the amount of these substances in tumor tissue and preventing normal cells from unnecessary exposure. This manuscript provides an overview of the targeted drug delivery platforms that take advantage of the LHRH receptors overexpression by cancer cells.


Nanomedicine: Nanotechnology, Biology and Medicine | 2018

Intraperitoneal Nanotherapy for Metastatic Ovarian Cancer Based on siRNA-Mediated Suppression of DJ-1 Protein Combined with a Low Dose of Cisplatin

Canan Schumann; Stephanie Kuan Chan; Jess A. Millar; Yuliya Bortnyak; Katherine Carey; Alex Fedchyk; Leon Wong; Tetiana Korzun; Abraham S. Moses; Anna Lorenz; Delany Shea; Olena Taratula; Oleh Khalimonchuk; Oleh Taratula

Herein, we report an efficient combinatorial therapy for metastatic ovarian cancer based on siRNA-mediated suppression of DJ-1 protein combined with a low dose of cisplatin. DJ-1 protein modulates, either directly or indirectly, different oncogenic pathways that support and promote survival, growth, and invasion of ovarian cancer cells. To evaluate the potential of this novel therapy, we have engineered a cancer-targeted nanoplatform and validated that DJ-1 siRNA delivered by this nanoplatform after intraperitoneal injection efficiently downregulates the DJ-1 protein in metastatic ovarian cancer tumors and ascites. In vivo experiments revealed that DJ-1 siRNA monotherapy outperformed cisplatin alone by inhibiting tumor growth and increasing survival of mice with metastatic ovarian cancer. Finally, three cycles of siRNA-mediated DJ-1 therapy in combination with a low dose of cisplatin completely eradicated ovarian cancer tumors from the mice, and there was no cancer recurrence detected for the duration of the study, which lasted 35 weeks.

Collaboration


Dive into the Olena Taratula's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoning Li

Oregon State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan Rochford

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge