Olga A. Snytnikova
Novosibirsk State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olga A. Snytnikova.
Journal of Photochemistry and Photobiology B-biology | 2008
Peter S. Sherin; Yu.P. Tsentalovich; Olga A. Snytnikova; R. Z. Sagdeev
Quantum yields of photodecomposition and triplet state formation under aerobic and anaerobic conditions are determined for kynurenine (KN), 3-hydroxykynurenine (3OHKN), xanthurenic acid (XAN), and kynurenine adducts of glutathione (GSH-KN), cysteine (Cys-KN), histidine (His-KN), and lysine (Lys-KN) in aqueous solutions. The highest yields of anaerobic photodecomposition were obtained for GSH-KN and His-KN adducts, which correlates with the highest triplet yields for these compounds. In aerobic conditions, the photodecomposition yields for all compounds under study increase; the highest decomposition rates were observed for His-KN and 3OHKN. The fast decomposition of the latter is attributed to the dark autoxidation of the starting compound.
Experimental Eye Research | 2014
Vadim V. Yanshole; Olga A. Snytnikova; Alexey S. Kiryutin; Lyudmila V. Yanshole; R. Z. Sagdeev; Yuri P. Tsentalovich
This work is the first comprehensive report on the quantitative metabolomic composition of the rat lens. Quantitative metabolomic profiles of lenses were acquired with the combined use of high-frequency nuclear magnetic resonance (NMR) and high-performance liquid chromatography with high-resolution mass-spectrometric detection (LC-MS) methods. More than forty low molecular weight compounds found in the lens have been reliably identified and quantified. The most abundant metabolites in the 3-month-old Wistar rat lens are taurine, hypotaurine, lactate, phosphocholine and reduced glutathione. The analysis of age-related changes in the lens metabolomic composition shows a gradual decrease of the content of most metabolites. This decrease is the most pronounced between 1 and 3 months, which probably corresponds to the completion of the lens maturation in one-month-old rats and to the high rate of the young lens growth. The enhanced levels of tryptophan, tyrosine, carnitine, glycerophosphate, GSH and GSSG were found in lenses of senescence-accelerated OXYS rats; for some metabolites, this effect may probably be attributed to the compensatory response to oxidative stress.
Experimental Eye Research | 2008
Olga A. Snytnikova; Anjella Zh. Fursova; E. I. Chernyak; Vladimir G. Vasiliev; S. V. Morozov; Nataliya G. Kolosova; Yuri P. Tsentalovich
Analysis of UV filter levels in 48 cataractous human lenses was performed with the use of HPLC. A new chromophore with the absorption maximum at 410nm and molecular mass of 369Da was detected and assigned as deaminated 3-hydroxykynurenine O-beta-D-glucoside (3OHCKAG). Cataractous lenses are characterized by the wide range of the UV filter concentrations and remarkably lower levels of UV filters and glutathione than published for the normal lenses. No correlation between the lens age and the level of UV filters has been found in cataractous lenses.
Physical Chemistry Chemical Physics | 2003
Alexandra V. Yurkovskaya; Olga A. Snytnikova; Olga B. Morozova; Yuri P. Tsentalovich; R. Z. Sagdeev
Laser flash photolysis and time-resolved CIDNP have been applied to the investigation of the kinetics and the mechanism of the photoreaction between triplet 2,2′-dipyridyl (DP) and guanosine-5′-monophosphate (GMP) over a wide pH range in aqueous solution. The pH dependence of the rate constant kq of quenching the triplet dipyridyl by the nucleotide has been measured. Upon pH titration, four pairs of the reacting species contribute to the observed value of kq: pH 9.4, TDP and G(−H)−, with the corresponding quenching rate constants k1=1.3×109 M−1 s−1, k2=2.7×109 M−1 s−1, k3=1.6×108 M−1 s−1, k4=1.1×109 M−1 s−1. Based on LFP and CIDNP data, the established mechanism of the quenching reaction is hydrogen atom transfer in neutral solution (5.8<pH<9.4), and electron transfer in all other pH regions. Kinetic CIDNP measurements reveal that in acidic and basic solutions the CIDNP kinetics for GMP is determined by the degenerate electron exchange between the GMP radical and its parent molecule with the rate constants 1.3×108 M−1 s−1 (acidic conditions) and 4.0×107 M−1 s−1 (basic conditions). The nuclear paramagnetic relaxation time for the proton H8 of GMP, T1=20±5 μs, obtained from the simulations of the CIDNP kinetics, is found to be independent of the protonation state of the radical.
Physical Chemistry Chemical Physics | 2010
Vadim V. Yanshole; Peter S. Sherin; Nina P. Gritsan; Olga A. Snytnikova; Victor I. Mamatyuk; Jakob Grilj; Eric Vauthey; R. Z. Sagdeev; Yuri P. Tsentalovich
The properties of xanthurenic acid (XAN) in ground and photoexcited states have been studied using steady-state and time-resolved optical methods as well as quantum chemistry calculations. In neutral aqueous solution and in alcohols, XAN is present in a single tautomeric form (keto form), whereas in aprotic solvents and probably in basic aqueous solutions, more than one tautomeric form is present. UV irradiation of aqueous and alcoholic solutions of XAN results in a very rapid solvent-assisted tautomerization to the enol form, the later undergoes solvent-assisted transformation back to the keto form. The photolysis of XAN in aprotic solvents gives rise to the formation of numerous intermediate forms of XAN in both triplet and ground states. Under intense laser irradiation, XAN undergoes biphotonic ionization, the precursor for ionization being the excited singlet state.
Journal of Chemical Physics | 2006
P. S. Sherin; Olga A. Snytnikova; Yu.P. Tsentalovich; R. Z. Sagdeev
The quantum yield of photoionization of TrpH and IndH from the nonrelaxed prefluorescent state S* increases with the temperature decrease. This effect is attributed to the competition between temperature independent ionization and ultrafast thermal relaxation S* --> S1. The rate constant of the relaxation does not depend on the solvent and on the presence of the amino acid side chain: the temperature dependences of photoionization quantum yield, obtained for TrpH and IndH in different solvents, practically coincide. The activation energy for the relaxation rate constant Er approximately 4.5 kJ/mol probably corresponds to intramolecular process or to the formation of the vibronically excited transient complex between photoexcited molecule and solvent molecules.
Metabolomics | 2017
Olga A. Snytnikova; Anastasiya A. Khlichkina; Lyudmila V. Yanshole; Vadim V. Yanshole; Igor A. Iskakov; Elena V. Egorova; Denis A. Stepakov; Vladimir P. Novoselov; Yuri P. Tsentalovich
IntroductionThe optical elements of the eye—cornea, lens, and vitreous humor—are avascular tissues, and their nutrition and waste removal are provided by aqueous humor (AH). The AH production occurs through the active secretion and the passive diffusion/ultrafiltration of blood plasma. The comparison of the metabolomic profiles of AH and plasma is important for understanding of the mechanisms of biochemical processes and metabolite transport taking place in vivo in ocular tissues.ObjectivesThe work is aimed at the determination of concentrations of a wide range of most abundant metabolites in the human AH, the comparison of the metabolomic profiles of AH and serum, and the analysis of the post-mortem metabolomic changes in these two biological fluids.MethodsThe quantitative metabolomic profiling was carried out with the use of two independent methods—high-frequency 1H NMR spectroscopy and HPLC with high-resolution ESI-MS detection.ResultsThe concentrations of 71 most abundant metabolites in blood serum and AH from living patients and human cadavers have been measured. It has been found that the level of ascorbate in AH is by two orders of magnitude higher than that in serum; the levels of other metabolites are either similar to that in serum, or differ from that by a factor of 2–5. The post-mortem metabolomic composition of both serum and AH undergoes rapid and strong changes.ConclusionThe differences between the metabolomic profiles of AH and serum for majority of metabolites can be attributed to the metabolic activity of the ocular tissues leading to the lack or excess of some metabolites, while the high concentration of ascorbate in AH demonstrates the activity of ascorbate-specific pumps at the blood-aqueous border. The post-mortem metabolomic changes are caused by the disruption of the major biochemical cycles and cell lysis. These changes should be taken into account in the analysis of disease-induced changes in post-mortem samples of the ocular tissues.
Experimental Eye Research | 2013
Egor A. Dobretsov; Olga A. Snytnikova; Igor V. Koptyug; Robert Kaptein; Yuri P. Tsentalovich
NMR micro-imaging technique has been used for the measurement of the water content distribution in lenses of senescence-accelerated OXYS rats and age-matched Wistar rats, as well as for the study of water and phosphate transport in rat lenses. The water content in the lens cortex is significantly higher than in the nucleus; the spatial gradient of the water content becomes steeper with age. No difference in the water content distribution has been found between Wistar and OXYS rat lenses of matching ages, although cataract onset in the OXYS rat lens occurs much earlier due to the enhanced generation of reactive oxygen species associated with oxidative stress. This finding implies that cataract development does not lead to significant changes in water content distribution inside the lens. The water transport in rat lenses slows down with age, and in OXYS lenses it is somewhat faster than in lenses of Wistar rats, probably due to the compensatory response to oxidative stress. The application of (31)P MRI for the monitoring of phosphate penetration into a lens has been performed for the first time. It is found that phosphate transport in a lens is significantly slower than that of water.
Metabolomics | 2016
Ekaterina A. Zelentsova; Lyudmila V. Yanshole; Olga A. Snytnikova; Vadim V. Yanshole; Yuri P. Tsentalovich; R. Z. Sagdeev
IntroductionThe analysis of post-mortem metabolomic changes in biological fluids opens the way to develop new methods for the estimation of post-mortem interval (PMI). It may also help in the analysis of disease-induced metabolomic changes in human tissues when the postoperational samples are compared to the post-mortem samples from healthy donors.ObjectivesThe goals of this study are to observe and classify the post-mortem changes occurring in the rabbit blood, aqueous and vitreous humors (AH and VH), to identify the potential PMI markers among a wide range of metabolites, and also to determine which biological fluid—blood, AH or VH—is more suitable for the PMI estimation.MethodsThe quantitative metabolomic profiling of samples of the rabbit serum, AH and VH taken at different PMIs has been performed with the combined use of high-frequency NMR and high-resolution LC–MS methods.ResultsThe quantitative levels of 61 metabolites in the rabbit serum, AH and VH at different PMIs have been measured. It has been found that the post-mortem metabolomic changes in AH and VH proceed slower than in blood, and the data scattering is lower. Among the metabolites whose concentrations increase with time, the most significant and linear growth is found for hypoxanthine, choline and glycerol.ConclusionThe obtained results suggest that the ocular fluids AH and VH may have some advantages over blood serum for the search of potential biochemical markers for the PMI estimation. Among the compounds studied in the present work, hypoxanthine, choline and glycerol give the biggest promise as the potential PMI biomarkers.
Organic and Biomolecular Chemistry | 2009
Lyudmila V. Kopylova; Olga A. Snytnikova; E. I. Chernyak; S. V. Morozov; Malcolm D. E. Forbes; Yuri P. Tsentalovich
Thermal degradation reactions of kynurenine (KN), 3-hydroxykynurenine (3OHKN), and several adducts of KN, to amino acids and reduced glutathione (GSH) have been studied at physiological temperature. These compounds are all implicated in age-related mammalian eye lens cataract formation at the molecular level. The main reaction pathway for both KN and 3OHKN is deamination via beta-elimination to carboxyketoalkenes CKA and 3OHCKA. These reactions show a weak pH dependence below pH values of approximately 8, and a strong pH dependence above this value. The 3OHKN structure deaminates at a faster rate than KN. A mechanism for the deamination reaction is proposed, involving an aryl carbonyl enol/enolate ion, that is strongly supported by the structural, kinetic, and pH data. The degradation of Lys, His, Cys and GSH adducts of the CKA moieties was also studied. The Lys adduct was found to be relatively stable over 200 h at 37 degrees C, while significant degradation was observed for the other adducts. The results are discussed in terms of known post-translational modification reactions of the lens proteins and compared to incubation studies involving KN and related compounds in the presence of proteins.