Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olga Babourina is active.

Publication


Featured researches published by Olga Babourina.


Journal of Experimental Botany | 2011

Role of magnesium in alleviation of aluminium toxicity in plants

Jayakumar Bose; Olga Babourina; Zed Rengel

Magnesium is pivotal for activating a large number of enzymes; hence, magnesium plays an important role in numerous physiological and biochemical processes affecting plant growth and development. Magnesium can also ameliorate aluminium phytotoxicity, but literature reports on the dynamics of magnesium homeostasis upon exposure to aluminium are rare. Herein existing knowledge on the magnesium transport mechanisms and homeostasis maintenance in plant cells is critically reviewed. Even though overexpression of magnesium transporters can alleviate aluminium toxicity in plants, the mechanisms governing such alleviation remain obscure. Possible magnesium-dependent mechanisms include (i) better carbon partitioning from shoots to roots; (ii) increased synthesis and exudation of organic acid anions; (iii) enhanced acid phosphatase activity; (iv) maintenance of proton-ATPase activity and cytoplasmic pH regulation; (v) protection against an aluminium-induced cytosolic calcium increase; and (vi) protection against reactive oxygen species. Future research should concentrate on assessing aluminium toxicity and tolerance in plants with overexpressed or antisense magnesium transporters to increase understanding of the aluminium-magnesium interaction.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Blue light-induced kinetics of H+ and Ca2+ fluxes in etiolated wild-type and phototropin-mutant Arabidopsis seedlings

Olga Babourina; Ia Newman; Sergey Shabala

Ion flux kinetics associated with blue light (BL) treatment of two wild types (WTs) and the phot1, phot2 and phot1/phot2 mutants of Arabidopsis were studied by using the MIFE noninvasive ion-selective microelectrode technique. BL induced significant changes in activity of H+ and Ca2+ transporters within the first 10 min of BL onset, peaking between 3 and 5 min. In all WT plants and in phot2 mutants, BL induced immediate Ca2+ influx. In phot1 and phot1/phot2 mutants, net Ca2+ flux remained steady. It is suggested that PHOT1 regulates Ca2+ uptake into the cytoplasm from the apoplast. Changes in ion fluxes were measured from cotyledons of intact seedlings and from the cut top of the hypocotyl of decapitated seedlings. Thus the photoreceptors mediating BL-induced Ca2+ and H+ fluxes are present in the rest of the decapitated seedling and probably in the cotyledons as well. The H+ and Ca2+ flux responses to BL appear not to be linked because, (i) when changes were observed for both ions, Ca2+ flux changed almost immediately, whereas H+ flux lagged by about 1.5 min; (ii) in the Wassilewskija ecotype, changes in H+ fluxes were small. Finally, wave-like changes in Ca2+ and H+ concentrations were observed along the cotyledon–hook axis regardless of its orientation to the light.


Journal of Experimental Botany | 2013

Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel

Maheswari Jayakannan; Jayakumar Bose; Olga Babourina; Zed Rengel; Sergey Shabala

Despite numerous reports implicating salicylic acid (SA) in plant salinity responses, the specific ionic mechanisms of SA-mediated adaptation to salt stress remain elusive. To address this issue, a non-invasive microelectrode ion flux estimation technique was used to study kinetics of NaCl-induced net ion fluxes in Arabidopsis thaliana in response to various SA concentrations and incubation times. NaCl-induced K+ efflux and H+ influx from the mature root zone were both significantly decreased in roots pretreated with 10–500 μM SA, with strongest effect being observed in the 10–50 μM SA range. Considering temporal dynamics (0–8-h SA pretreatment), the 1-h pretreatment was most effective in enhancing K+ retention in the cytosol. The pharmacological, membrane potential, and shoot K+ and Na+ accumulation data were all consistent with the model in which the SA pretreatment enhanced activity of H+-ATPase, decreased NaCl-induced membrane depolarization, and minimized NaCl-induced K+ leakage from the cell within the first hour of salt stress. In long-term treatments, SA increased shoot K+ and decreased shoot Na+ accumulation. The short-term NaCl-induced K+ efflux was smallest in the gork1-1 mutant, followed by the rbohD mutant, and was highest in the wild type. Most significantly, the SA pretreatment decreased the NaCl-induced K+ efflux from rbohD and the wild type to the level of gork1-1, whereas no effect was observed in gork1-1. These data provide the first direct evidence that the SA pretreatment ameliorates salinity stress by counteracting NaCl-induced membrane depolarization and by decreasing K+ efflux via GORK channels.


Physiologia Plantarum | 2008

The cyclic nucleotide‐gated channel, AtCNGC10, influences salt tolerance in Arabidopsis

Kun-Mei Guo; Olga Babourina; David A. Christopher; Tamas Borsics; Zed Rengel

Cyclic nucleotide-gated channels (CNGCs) in the plasma membrane transport K+ and other cations; however, their roles in the response and adaptation of plants to environmental salinity are unclear. Growth, cation contents, salt tolerance and K+ fluxes were assessed in wild-type and two AtCNGC10 antisense lines (A2 and A3) of Arabidopsis thaliana (L.) Heynh. Compared with the wild-type, mature plants of both antisense lines had altered K+ and Na+ concentrations in shoots and were more sensitive to salt stress, as assessed by biomass and Chl fluorescence. The shoots of A2 and A3 plants contained higher Na+ concentrations and significantly higher Na+/K+ ratios compared with wild-type, whereas roots contained higher K+ concentrations and lower Na+/K+ ratios. Four-day-old seedlings of both antisense lines exposed to salt stress had smaller Na+/K+ ratios and longer roots than the wild-type. Under sudden salt treatment, the Na+ efflux was higher and the K+ efflux was smaller in the antisense lines, indicating that AtCNGC10 might function as a channel providing Na+ influx and K+ efflux at the root/soil interface. We conclude that the AtCNGC10 channel is involved in Na+ and K+ transport during cation uptake in roots and in long-distance transport, such as phloem loading and/or xylem retrieval. Mature A2 and A3 plants became more salt sensitive than wild-type plants because of impaired photosynthesis induced by a higher Na+ concentration in the leaves.


Plant Growth Regulation | 2015

Salicylic acid in plant salinity stress signalling and tolerance

Maheswari Jayakannan; Jayakumar Bose; Olga Babourina; Zed Rengel; Sergey Shabala

Soil salinity is one of the major environmental stresses affecting crop production worldwide, costing over


Journal of Experimental Botany | 2015

The NPR1-dependent salicylic acid signalling pathway is pivotal for enhanced salt and oxidative stress tolerance in Arabidopsis

Maheswari Jayakannan; Jayakumar Bose; Olga Babourina; Sergey Shabala; Amandine Massart; Charlotte Poschenrieder; Zed Rengel

27Bln per year in lost opportunities to agricultural sector and making improved salinity tolerance of crops a critical step for sustainable food production. Salicylic acid (SA) is a signalling molecule known to participate in defence responses against variety of environmental stresses including salinity. However, the specific knowledge on how SA signalling propagates and promotes salt tolerance in plants remains largely unknown. This review focuses on the role of SA in regulation of ion transport processes during salt stress. In doing this, we briefly summarise a current knowledge on SA biosynthesis and metabolism, and then discuss molecular and physiological mechanisms mediating SA intracellular and long distance transport. We then discuss mechanisms of SA sensing and interaction with other plant hormones and signalling molecules such as ROS, and how this signalling affects activity of sodium and potassium transporters during salt stress. We argue that NPR1-mediated SA signalling is pivotal for (1) controlling Na+ entry into roots and the subsequent long-distance transport into shoots, (2) enhancing H+-ATPase activity in roots, (3) preventing stress-induced K+ leakage from roots via depolarisation-activated potassium outward-rectifying channel (KOR) and ROS-activated non-selective cation channels, and (4) increasing K+ concentration in shoots during salt stress. Future work should focus on how SA can regulate Na+ exclusion and sequestration mechanisms in plants.


Journal of Experimental Botany | 2010

Aluminium-induced ion transport in Arabidopsis: the relationship between Al tolerance and root ion flux

Jayakumar Bose; Olga Babourina; Sergey Shabala; Zed Rengel

Summary NPR1-dependent salicylic acid signalling controls sodium entry into the roots while preventing potassium loss through depolarization-activated outward-rectifying potassium and ROS-activated non-selective cation channels during salt and oxidative stresses.


Physiologia Plantarum | 2009

Na+/H+ antiporter activity of the SOS1 gene: lifetime imaging analysis and electrophysiological studies on Arabidopsis seedlings

Kun-Mei Guo; Olga Babourina; Zed Rengel

Aluminium (Al) rhizotoxicity coincides with low pH; however, it is unclear whether plant tolerance to these two factors is controlled by the same mechanism. To address this question, the Al-resistant alr104 mutant, two Al-sensitive mutants (als3 and als5), and wild-type Arabidopsis thaliana were compared in long-term exposure (solution culture) and in short-term exposure experiments (H+ and K+ fluxes, rhizosphere pH, and plasma membrane potential, Em). Based on biomass accumulation, als5 and alr104 showed tolerance to low pH, whereas alr104 was tolerant to the combined low-pH/Al treatment. The sensitivity of the als5 and als3 mutants to the Al stress was similar. The Al-induced decrease in H+ influx at the distal elongation zone (DEZ) and Al-induced H+ efflux at the mature zone (MZ) were higher in the Al-sensitive mutants (als3 and als5) than in the wild type and the alr104 mutant. Under combined low-pH/Al treatment, alr104 and the wild type had depolarized plasma membranes for the entire 30 min measurement period, whereas in the Al-sensitive mutants (als3 and als5), initial depolarization to around –60 mV became hyperpolarization at –110 mV after 20 min. At the DEZ, the Em changes corresponded to the changes in K+ flux: K+ efflux was higher in alr104 and the wild type than in the als3 and als5 mutants. In conclusion, Al tolerance in the alr104 mutant correlated with Em depolarization, higher K+ efflux, and higher H+ influx, which led to a more alkaline rhizosphere under the combined low-pH/Al stress. Low-pH tolerance (als5) was linked to higher H+ uptake under low-pH stress, which was abolished by Al exposure.


Plant and Cell Physiology | 2013

Low-pH and Aluminum Resistance in Arabidopsis Correlates with High Cytosolic Magnesium Content and Increased Magnesium Uptake by Plant Roots

Jayakumar Bose; Olga Babourina; Sergey Shabala; Zed Rengel

Based on sequence analysis, the salt overly sensitive (SOS1) gene has been suggested to function as a Na(+)/H(+) antiporter located at the plasma membrane of plant cells, being expressed mostly in the meristem zone of the root and in the parenchyma cells surrounding the vascular tissue of the stem. In this study, we compared net H(+) and Ca(2+) fluxes and intracellular pH and [Ca(2+)](cyt) in the root meristem zone of Arabidopsis wild-type (WT) and sos mutants before and after salt stress. In addition, we studied the effect of pretreatment with amiloride (an inhibitor of Na(+)/H(+) antiporters) on net ion fluxes, intracellular pH and intracellular Ca(2+) activity ([Ca(2+)](cyt)) in WT plants and sos1 mutants before and after salt stress. Net ion fluxes were measured using microelectrode ion flux estimation (MIFE) and intracellular pH and [Ca(2+)](cyt) using fluorescence lifetime imaging microscopy (FLIM) techniques. During the first 15 min after NaCl application, sos1 mutants showed net H(+) efflux and intracellular alkalinization in the meristem zone, whereas sos2 and sos3 mutants and WT showed net H(+) influx and slight intracellular acidification in the meristem zone. Treatment with amiloride led to intracellular acidification and lower net H(+) flux in WT plants and to a decrease in intracellular Ca(2+) in WT and sos1 plants. WT plants pretreated with amiloride did not show positive net H(+) flux and intracellular acidification. After NaCl application, internal pH shifted to higher values in WT and sos1 plants. However, absolute values of H(+) fluxes were higher and internal pH values were lower in WT plants pretreated with amiloride compared with sos1 mutants. Therefore, the SOS1 transporter is involved in H(+) influx into the meristem zone of Arabidopsis roots, or it may function as a Na(+)/H(+) antiporter. Amiloride affects SOS1 and other Na(+)/H(+) antiporters in plant cells because of its ability to decrease the H(+) gradient across the plasma membrane.


Plant Cell and Environment | 2011

Plasma membrane Ca2+ transporters mediate virus‐induced acquired resistance to oxidative stress

Sergey Shabala; Lone Baekgaard; Lana Shabala; Anja T. Fuglsang; Olga Babourina; Michael G. Palmgren; Tracey Ann Cuin; Zed Rengel; Lev G. Nemchinov

Low-pH stress and Al(3+) toxicity affect root growth in acid soils. It was hypothesized that the capacity of genotypes to maintain Mg(2+) uptake in acidic environments may contribute to low-pH and Al resistance, but explicit evidence is lacking. In this work, an Al-resistant alr104 mutant and two Al-sensitive mutants (als5 and als3) of Arabidopsis thaliana were compared with the wild type (Col-0) for Mg(2+) uptake and intracellular Mg(2+) concentration under low-pH and combined low-pH/Al stresses. Magnesium accumulation in roots was measured in long-term (7 d) experiments. The Mg(2+) fluxes were measured using ion-sensitive microelectrodes at the distal elongation and the mature root zones in short-term (0-60 min) experiments. Intracellular Mg(2+) concentrations were measured in intact root cells at the distal elongation zone using magnesium-specific fluorescent dye and fluorescent lifetime imaging (FLIM) analysis. Under low-pH stress, Arabidopsis mutants als5 and alr104 maintained a higher Mg concentration in roots, and had greater Mg(2+) influx than the wild type and the als3 mutant. Under combined low-pH/Al treatment, Al-resistant genotypes (wild type and alr104) maintained a higher Mg(2+) accumulation, and had a higher Mg(2+) influx and higher intracellular Mg(2+) concentration than Al-sensitive genotypes (als3 and als5). Overall, these results show that increased Mg(2+) uptake correlates with an enhanced capacity of Arabidopsis genotypes to cope with low-pH and combined low-pH/Al stresses.

Collaboration


Dive into the Olga Babourina's collaboration.

Top Co-Authors

Avatar

Zed Rengel

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ia Newman

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Konstantin Voltchanskii

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Maheswari Jayakannan

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kun-Mei Guo

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge