Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olga Cañadas is active.

Publication


Featured researches published by Olga Cañadas.


PLOS ONE | 2012

The Interplay of Lung Surfactant Proteins and Lipids Assimilates the Macrophage Clearance of Nanoparticles

Christian A. Ruge; Ulrich F. Schaefer; Jennifer Herrmann; Julian Kirch; Olga Cañadas; Mercedes Echaide; Jesús Pérez-Gil; Cristina Casals; Rolf Müller; Claus-Michael Lehr

The peripheral lungs are a potential entrance portal for nanoparticles into the human body due to their large surface area. The fact that nanoparticles can be deposited in the alveolar region of the lungs is of interest for pulmonary drug delivery strategies and is of equal importance for toxicological considerations. Therefore, a detailed understanding of nanoparticle interaction with the structures of this largest and most sensitive part of the lungs is important for both nanomedicine and nanotoxicology. Astonishingly, there is still little known about the bio-nano interactions that occur after nanoparticle deposition in the alveoli. In this study, we compared the effects of surfactant-associated protein A (SP-A) and D (SP-D) on the clearance of magnetite nanoparticles (mNP) with either more hydrophilic (starch) or hydrophobic (phosphatidylcholine) surface modification by an alveolar macrophage (AM) cell line (MH-S) using flow cytometry and confocal microscopy. Both proteins enhanced the AM uptake of mNP compared with pristine nanoparticles; for the hydrophilic ST-mNP, this effect was strongest with SP-D, whereas for the hydrophobic PL-mNP it was most pronounced with SP-A. Using gel electrophoretic and dynamic light scattering methods, we were able to demonstrate that the observed cellular effects were related to protein adsorption and to protein-mediated interference with the colloidal stability. Next, we investigated the influence of various surfactant lipids on nanoparticle uptake by AM because lipids are the major surfactant component. Synthetic surfactant lipid and isolated native surfactant preparations significantly modulated the effects exerted by SP-A and SP-D, respectively, resulting in comparable levels of macrophage interaction for both hydrophilic and hydrophobic nanoparticles. Our findings suggest that because of the interplay of both surfactant lipids and proteins, the AM clearance of nanoparticles is essentially the same, regardless of different intrinsic surface properties.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The CD5 ectodomain interacts with conserved fungal cell wall components and protects from zymosan-induced septic shock-like syndrome

Jorge Vera; Rafael Fenutría; Olga Cañadas; Maite Figueras; Rubén Mota; Maria-Rosa Sarrias; David L. Williams; Cristina Casals; José Yélamos; Francisco Lozano

The CD5 lymphocyte surface receptor is a group B member of the ancient and highly conserved scavenger receptor cysteine-rich superfamily. CD5 is expressed on mature T and B1a cells, where it is known to modulate lymphocyte activation and/or differentiation processes. Recently, the interaction of a few group B SRCR members (CD6, Spα, and DMBT1) with conserved microbial structures has been reported. Protein binding assays presented herein indicate that the CD5 ectodomain binds to and aggregates fungal cells (Schizosaccharomyces pombe, Candida albicans, and Cryptococcus neoformans) but not to Gram-negative (Escherichia coli) or Gram-positive (Staphylococcus aureus) bacteria. Accordingly, the CD5 ectodomain binds to zymosan but not to purified bacterial cell wall constituents (LPS, lipotheicoic acid, or peptidoglycan), and such binding is specifically competed by β-glucan but not by mannan. The Kd of the rshCD5/(1→3)-β-d-glucan phosphate interaction is 3.7 ± 0.2 nM as calculated from tryptophan fluorescence data analysis of free and bound rshCD5. Moreover, zymosan binds to membrane-bound CD5, and this induces both MAPK activation and cytokine release. In vivo validation of the fungal binding properties of the CD5 ectodomain is deduced from its protective effect in a mouse model of zymosan-induced septic shock-like syndrome. In conclusion, the present results indicate that the CD5 lymphocyte receptor may sense the presence of conserved fungal components [namely, (1→3)-β-d-glucans] and support the therapeutic potential of soluble CD5 forms in fungal sepsis.


Nanomedicine: Nanotechnology, Biology and Medicine | 2011

Uptake of nanoparticles by alveolar macrophages is triggered by surfactant protein A

Christian A. Ruge; Julian Kirch; Olga Cañadas; Marc Schneider; Jesús Pérez-Gil; Ulrich F. Schaefer; Cristina Casals; Claus-Michael Lehr

UNLABELLED Understanding the bio-nano interactions in the lungs upon the inhalation of nanoparticles is a major challenge in both pulmonary nanomedicine and nanotoxicology. To investigate the effect of pulmonary surfactant protein A (SP-A) on the interaction between nanoparticles and alveolar macrophages, we used magnetite nanoparticles (110-180 nm in diameter) coated with different polymers (starch, carboxymethyldextran, chitosan, poly-maleic-oleic acid, phosphatidylcholine). Cellular binding and uptake of nanoparticles by alveolar macrophages was increased for nanoparticles treated with SP-A, whereas albumin, the prevailing protein in plasma, led to a significant decrease. A significantly different adsorption pattern of SP-A, compared to albumin was found for these five different nanomaterials. This study provides evidence that after inhalation of nanoparticles, a different protein coating and thus different biological behavior may result compared to direct administration to the bloodstream. FROM THE CLINICAL EDITOR In this nano-toxicology study of inhaled nanoparticles, the authors investigated the effect of pulmonary surfactant protein A on the interaction between nanoparticles and alveolar macrophages utilizing magnetite nanoparticles coated with different polymers (starch, carboxymethyldextran, chitosan, poly-maleic-oleic acid, phosphatidylcholine). Cellular binding and uptake of nanoparticles increased for nanoparticles treated with SP-A, whereas albumin, the prevailing protein in plasma, led to a significant decrease.


Biochimica et Biophysica Acta | 2012

Role of lipid ordered/disordered phase coexistence in pulmonary surfactant function

Cristina Casals; Olga Cañadas

The respiratory epithelium has evolved to produce a complicated network of extracellular membranes that are essential for breathing and, ultimately, survival. Surfactant membranes form a stable monolayer at the air-liquid interface with bilayer structures attached to it. By reducing the surface tension at the air-liquid interface, surfactant stabilizes the lung against collapse and facilitates inflation. The special composition of surfactant membranes results in the coexistence of two distinct micrometer-sized ordered/disordered phases maintained up to physiological temperatures. Phase coexistence might facilitate monolayer folding to form three-dimensional structures during exhalation and hence allow the film to attain minimal surface tension. These folded structures may act as a membrane reserve and attenuate the increase in membrane tension during inspiration. The present review summarizes what is known of ordered/disordered lipid phase coexistence in lung surfactant, paying attention to the possible role played by domain boundaries in the monolayer-to-multilayer transition, and the correlations of biophysical inactivation of pulmonary surfactant with alterations in phase coexistence.


FEBS Journal | 2006

Physical properties and surface activity of surfactant-like membranes containing the cationic and hydrophobic peptide KL4

Alejandra Sáenz; Olga Cañadas; Luis A. Bagatolli; Mark Johnson; Cristina Casals

Surfactant‐like membranes containing the 21‐residue peptide KLLLLKLLLLKLLLLKLLLLK (KL4), have been clinically tested as a therapeutic agent for respiratory distress syndrome in premature infants. The aims of this study were to investigate the interactions between the KL4 peptide and lipid bilayers, and the role of both the lipid composition and KL4 structure on the surface adsorption activity of KL4‐containing membranes. We used bilayers of three‐component systems [1,2‐dipalmitoyl‐phosphatidylcholine/1‐palmitoyl‐2‐oleoyl‐phosphatidylglycerol/palmitic acid (DPPC/POPG/PA) and DPPC/1‐palmitoyl‐2‐oleoyl‐phosphatidylcholine (POPC)/PA] and binary lipid mixtures of DPPC/POPG and DPPC/PA to examine the specific interaction of KL4 with POPG and PA. We found that, at low peptide concentrations, KL4 adopted a predominantly α‐helical secondary structure in POPG‐ or POPC‐containing membranes, and a β‐sheet structure in DPPC/PA vesicles. As the concentration of the peptide increased, KL4 interconverted to a β‐sheet structure in DPPC/POPG/PA or DPPC/POPC/PA vesicles. Ca2+ favored α⇆β interconversion. This conformational flexibility of KL4 did not influence the surface adsorption activity of KL4‐containing vesicles. KL4 showed a concentration‐dependent ordering effect on POPG‐ and POPC‐containing membranes, which could be linked to its surface activity. In addition, we found that the physical state of the membrane had a critical role in the surface adsorption process. Our results indicate that the most rapid surface adsorption takes place with vesicles showing well‐defined solid/fluid phase co‐existence at temperatures below their gel to fluid phase transition temperature, such as those of DPPC/POPG/PA and DPPC/POPC/PA. In contrast, more fluid (DPPC/POPG) or excessively rigid (DPPC/PA) KL4‐containing membranes fail in their ability to adsorb rapidly onto and spread at the air–water interface.


Biophysical Journal | 2007

Surfactant protein A forms extensive lattice-like structures on 1,2-dipalmitoylphosphatidylcholine/rough-lipopolysaccharide-mixed monolayers.

Ignacio Garcia-Verdugo; Olga Cañadas; Svetla G. Taneva; Kevin M. W. Keough; Cristina Casals

Due to the inhalation of airborne particles containing bacterial lipopolysaccharide (LPS), these molecules might incorporate into the 1,2-dipalmitoylphosphatidylcholine (DPPC)-rich monolayer and interact with surfactant protein A (SP-A), the major surfactant protein component involved in host defense. In this study, epifluorescence microscopy combined with a surface balance was used to examine the interaction of SP-A with mixed monolayers of DPPC/rough LPS (Re-LPS). Binary monolayers of Re-LPS plus DPPC showed negative deviations from ideal behavior of the mean areas in the films consistent with partial miscibility and attractive interaction between the lipids. This interaction resulted in rearrangement and reduction of the size of DPPC-rich solid domains in DPPC/Re-LPS monolayers. The adsorption of SP-A to these monolayers caused expansion in the lipid molecular areas. SP-A interacted strongly with Re-LPS and promoted the formation of DPPC-rich solid domains. Fluorescently labeled Texas red-SP-A accumulated at the fluid-solid boundary regions and formed networks of interconnected filaments in the fluid phase of DPPC/Re-LPS monolayers in a Ca2+-independent manner. These lattice-like structures were also observed when TR-SP-A interacted with lipid A monolayers. These novel results deepen our understanding of the specific interaction of SP-A with the lipid A moiety of bacterial LPS.


Biophysical Journal | 2008

SP-A Permeabilizes Lipopolysaccharide Membranes by Forming Protein Aggregates that Extract Lipids from the Membrane

Olga Cañadas; Ignacio Garcia-Verdugo; Kevin M. W. Keough; Cristina Casals

Surfactant protein A (SP-A) is known to cause bacterial permeabilization. The aim of this work was to gain insight into the mechanism by which SP-A induces permeabilization of rough lipopolysaccharide (Re-LPS) membranes. In the presence of calcium, large interconnected aggregates of fluorescently labeled TR-SP-A were observed on the surface of Re-LPS films by epifluorescence microscopy. Using Re-LPS monolayer relaxation experiments at constant surface pressure, we demonstrated that SP-A induced Re-LPS molecular loss by promoting the formation of three-dimensional lipid-protein aggregates in Re-LPS membranes. This resulted in decreased van der Waals interactions between Re-LPS acyl chains, as determined by differential scanning calorimetry, which rendered the membrane leaky. We also showed that the coexistence of gel and fluid lipid phases within the Re-LPS membrane conferred susceptibility to SP-A-mediated permeabilization. Taken together, our results seem to indicate that the calcium-dependent permeabilization of Re-LPS membranes by SP-A is related to the extraction of LPS molecules from the membrane due to the formation of calcium-mediated protein aggregates that contain LPS.


Biophysical Journal | 2011

Bacterial Lipopolysaccharide Promotes Destabilization of Lung Surfactant-Like Films

Olga Cañadas; Kevin M. W. Keough; Cristina Casals

The airspaces are lined with a dipalmitoylphosphatidylcholine (DPPC)-rich film called pulmonary surfactant, which is named for its ability to maintain normal respiratory mechanics by reducing surface tension at the air-liquid interface. Inhaled airborne particles containing bacterial lipopolysaccharide (LPS) may incorporate into the surfactant monolayer. In this study, we evaluated the effect of smooth LPS (S-LPS), containing the entire core oligosaccharide region and the O-antigen, on the biophysical properties of lung surfactant-like films composed of either DPPC or DPPC/palmitoyloleoylphosphatidylglycerol (POPG)/palmitic acid (PA) (28:9:5.6, w/w/w). Our results show that low amounts of S-LPS fluidized DPPC monolayers, as demonstrated by fluorescence microscopy and changes in the compressibility modulus. This promoted early collapse and prevented the attainment of high surface pressures. These destabilizing effects could not be relieved by repeated compression-expansion cycles. Similar effects were observed with surfactant-like films composed of DPPC/POPG/PA. On the other hand, the interaction of SP-A, a surfactant membrane-associated alveolar protein that also binds to LPS, with surfactant-like films containing S-LPS increased monolayer destabilization due to the extraction of lipid molecules from the monolayer, leading to the dissolution of monolayer material in the aqueous subphase. This suggests that SP-A may act as an LPS scavenger.


Methods of Molecular Biology | 2013

Differential scanning calorimetry of protein-lipid interactions.

Olga Cañadas; Cristina Casals

Differential scanning calorimetry (DSC) is a highly sensitive non-perturbing technique for measuring the thermodynamic properties of thermally induced transitions. This technique is particularly useful for the characterization of lipid/protein interactions. This chapter presents an introduction to DSC instrumentation, basic theory, and methods and describes DSC applications for characterizing protein effects on model lipid membranes. Examples of the use of DSC for the evaluation of protein effects on modulation of membrane domains and membrane stability are given.


The Journal of Infectious Diseases | 2014

Targeting of Key Pathogenic Factors From Gram-Positive Bacteria by the Soluble Ectodomain of the Scavenger-Like Lymphocyte Receptor CD6

Mario Martínez-Florensa; Marta Consuegra-Fernández; Vanesa G. Martinez; Olga Cañadas; Noelia Armiger-Borràs; Lizette Bonet-Roselló; Aina Farrán; Jordi Vila; Cristina Casals; Francisco Lozano

Gram-positive bacteria cause a broad spectrum of infection-related diseases in both immunocompetent and immunocompromised hosts, ranging from localized infections to severe systemic conditions such as septic and toxic shock syndromes. This situation has been aggravated by the recent emergence of multidrug-resistant strains, thus stressing the need for alternative therapeutic approaches. One such possibility would be modulating the hosts immune response. Herein, the potential use of a soluble form of the scavenger-like human lymphocyte receptor CD6 (shCD6) belonging to an ancient family of innate immune receptors has been evaluated. shCD6 can bind to a broad spectrum of gram-positive bacteria thanks to the recognition of highly conserved cell wall components (lipoteichoic acid [LTA] and peptidoglycan [PGN]), which are essential for their viability and pathogenicity and are not amenable to antibiotic resistance. shCD6 has in vitro inhibitory effects on both bacterial growth and Toll-like receptor-mediated inflammatory response induced by LTA plus PGN. In vivo infusion of shCD6 improves survival on mouse models of septic shock by Staphylococcus aureus (either multidrug-resistant or -sensitive) or their endotoxins (LTA + PGN) or exotoxins (TSST-1). These results support the use of shCD6 and/or other scavenger-like immune receptors in the treatment of severe gram-positive-induced infectious conditions.

Collaboration


Dive into the Olga Cañadas's collaboration.

Top Co-Authors

Avatar

Cristina Casals

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Kevin M. W. Keough

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar

Alejandra Sáenz

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jesús Pérez-Gil

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ignacio Garcia-Verdugo

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luis A. Bagatolli

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge