Olga Dubuisson
Pennington Biomedical Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olga Dubuisson.
Diabetes | 2008
Pamela M. Rogers; Nazar Mashtalir; Miloni Rathod; Olga Dubuisson; Zhong Wang; Kumar Dasuri; Scott Babin; Alok Gupta; Nathan Markward; William T. Cefalu; Nikhil V. Dhurandhar
OBJECTIVE—Experimental infection of rats with human adenovirus type 36 (Ad-36) promotes adipogenesis and improves insulin sensitivity in a manner reminiscent of the pharmacologic effect of thiozolinediones. To exploit the potential of the viral proteins as a therapeutic target for treating insulin resistance, this study investigated the ability of Ad-36 to induce metabolically favorable changes in human adipose tissue. RESEARCH DESIGN AND METHODS—We determined whether Ad-36 increases glucose uptake in human adipose tissue explants. Cell-signaling pathways targeted by Ad-36 to increase glucose uptake were determined in the explants and human adipose–derived stem cells. Ad-2, a nonadipogenic human adenovirus, was used as a negative control. As a proof of concept, nondiabetic and diabetic subjects were screened for the presence of Ad-36 antibodies to ascertain if natural Ad-36 infection predicted improved glycemic control. RESULTS—Ad-36 increased glucose uptake by adipose tissue explants obtained from nondiabetic and diabetic subjects. Without insulin stimulation, Ad-36 upregulated expressions of several proadipogenic genes, adiponectin, and fatty acid synthase and reduced the expression of inflammatory cytokine macrophage chemoattractant protein-1 in a phosphotidylinositol 3-kinase (PI3K)-dependent manner. In turn, the activation of PI3K by Ad-36 was independent of insulin receptor signaling but dependent on Ras signaling recruited by Ad-36. Ad-2 was nonadipogenic and did not increase glucose uptake. Natural Ad-36 infection in nondiabetic and diabetic subjects was associated with significantly lower fasting glucose levels and A1C, respectively. CONCLUSIONS—Ad-36 proteins may provide novel therapeutic targets that remodel human adipose tissue to a more metabolically favorable profile.
American Journal of Physiology-endocrinology and Metabolism | 2011
Rashmi Krishnapuram; Emily J. Dhurandhar; Olga Dubuisson; Heather Kirk-Ballard; Sudip Bajpeyi; Nancy F. Butte; Melinda Sothern; Enette Larsen-Meyer; Stuart Chalew; Brian Bennett; Alok Gupta; Frank L. Greenway; William D. Johnson; Meghan M. Brashear; Gregory Reinhart; Tuomo Rankinen; Claude Bouchard; William T. Cefalu; Jianping Ye; Ronald Javier; Aamir Zuberi; Nikhil V. Dhurandhar
Drugs that improve chronic hyperglycemia independently of insulin signaling or reduction of adiposity or dietary fat intake may be highly desirable. Ad36, a human adenovirus, promotes glucose uptake in vitro independently of adiposity or proximal insulin signaling. We tested the ability of Ad36 to improve glycemic control in vivo and determined if the natural Ad36 infection in humans is associated with better glycemic control. C57BL/6J mice fed a chow diet or made diabetic with a high-fat (HF) diet were mock infected or infected with Ad36 or adenovirus Ad2 as a control for infection. Postinfection (pi), systemic glycemic control, hepatic lipid content, and cell signaling in tissues pertinent to glucose metabolism were determined. Next, sera of 1,507 adults and children were screened for Ad36 antibodies as an indicator of past natural infection. In chow-fed mice, Ad36 significantly improved glycemic control for 12 wk pi. In HF-fed mice, Ad36 improved glycemic control and hepatic steatosis up to 20 wk pi. In adipose tissue (AT), skeletal muscle (SM), and liver, Ad36 upregulated distal insulin signaling without recruiting the proximal insulin signaling. Cell signaling suggested that Ad36 increases AT and SM glucose uptake and reduces hepatic glucose release. In humans, Ad36 infection predicted better glycemic control and lower hepatic lipid content independently of age, sex, or adiposity. We conclude that Ad36 offers a novel tool to understand the pathways to improve hyperglycemia and hepatic steatosis independently of proximal insulin signaling, and despite a HF diet. This metabolic engineering by Ad36 appears relevant to humans for developing more practical and effective antidiabetic approaches.
Diabetes Care | 2013
Wan-Yu Lin; Olga Dubuisson; Rohina Rubicz; Nianjun Liu; David B. Allison; Joanne E. Curran; Anthony G. Comuzzie; John Blangero; Charles T. Leach; Harald H H Göring; Nikhil V. Dhurandhar
OBJECTIVE Ad36, a human adenovirus, increases adiposity but improves glycemic control in animal models. Similarly, natural Ad36 infection is cross-sectionally associated with greater adiposity and better glycemic control in humans. This study compared longitudinal observations in indices of adiposity (BMI and body fat percentage) and glycemic control (fasting glucose and insulin) in Ad36-infected versus uninfected adults. RESEARCH DESIGN AND METHODS Baseline sera from Hispanic men and women (n = 1,400) were screened post hoc for the presence of Ad36-specific antibodies. Indices of adiposity and glycemic control at baseline and at ∼10 years past the baseline were compared between seropositive and seronegative subjects, with adjustment for age and sex. In addition to age and sex, indices of glycemic control were adjusted for baseline BMI and were analyzed only for nondiabetic subjects. RESULTS Seropositive subjects (14.5%) had greater adiposity at baseline, compared with seronegative subjects. Longitudinally, seropositive subjects showed greater adiposity indices but lower fasting insulin levels. Subgroup analyses revealed that Ad36-seropositivity was associated with better baseline glycemic control and lower fasting insulin levels over time in the normal-weight group (BMI ≤25 kg/m2) and longitudinally, with greater adiposity in the overweight (BMI 25–30 kg/m2) and obese (BMI >30 kg/m2) men. Statistically, the differences between seropositive and seronegative individuals were modest in light of the multiple tests performed. CONCLUSIONS This study strengthens the plausibility that in humans, Ad36 increases adiposity and attenuates deterioration of glycemic control. Panoptically, the study raises the possibility that certain infections may modulate obesity or diabetes risk. A comprehensive understanding of these under-recognized factors is needed to effectively combat such metabolic disorders.
Endocrinology | 2011
Olga Dubuisson; Emily J. Dhurandhar; Rashmi Krishnapuram; Heather Kirk-Ballard; Alok Gupta; Vijay Hegde; Elizabeth Floyd; Jeffrey M. Gimble; Nikhil V. Dhurandhar
Although thiazolidinediones (TZD) effectively improve hyperglycemia and increase adiponectin, a proinsulin-sensitizing adipokine, they also increase adipogenesis via peroxisome proliferator-activated receptor (PPAR)γ induction, which may be undesirable. Recent safety concerns about some TZD have prompted the search for next generation agents that can enhance glycemic control and adiponectin independent of PPARγ or adipogenesis. Reminiscent of TZD action, a human adenovirus, adenovirus 36 (Ad36), up-regulates PPARγ, induces adipogenesis, and improves systemic glycemic control in vivo. We determined whether this effect of Ad36 requires PPARγ and/or adipogenesis. Glucose uptake and relevant cell signaling were determined in mock-infected or human adenoviruses Ad36 or Ad2-infected cell types under the following conditions: 1) undifferentiated human-adipose-tissue-derived stem cells (hASC), 2) hASC differentiated as adipocytes, 3) hASC in presence or absence of a PPARγ inhibitor, 4) NIH/3T3 that have impaired PPARγ expression, and 5) PPARγ-knockout mouse embryonic fibroblasts. Mouse embryonic fibroblasts with intact PPARγ served as a positive control. Additionally, to determine natural Ad36 infection, human sera were screened for Ad36 antibodies. In undifferentiated or differentiated hASC, or despite the inhibition, down-regulation, or the absence of PPARγ, Ad36 significantly enhanced glucose uptake and PPARγ, adiponectin, glucose transporter 4, and glucose transporter 1 protein abundance, compared with mock or Ad2-infected cells. This indicated that Ad36 up-regulates glucose uptake and adiponectin secretion independent of adipogenesis or without recruiting PPARγ. In humans, natural Ad36 infection predicted greater adiponectin levels, suggesting a human relevance of these effects. In conclusion, Ad36 provides a novel template to metabolically remodel human adipose tissue to enhance glycemic control without the concomitant increase in adiposity or PPARγ induction associated with TZD actions.
PLOS ONE | 2011
Emily J. Dhurandhar; Olga Dubuisson; Nazar Mashtalir; Rashmi Krishnapuram; Vijay Hegde; Nikhil V. Dhurandhar
Reducing dietary fat intake and excess adiposity, the cornerstones of behavioral treatment of insulin resistance(IR), are marginally successful over the long term. Ad36, a human adenovirus, offers a template to improve IR, independent of dietary fat intake or adiposity. Ad36 increases cellular glucose uptake via a Ras-mediated activation of phosphatidyl inositol 3-kinase(PI3K), and improves hyperglycemia in mice, despite a high-fat diet and without reducing adiposity. Ex-vivo studies suggest that Ad36 improves hyperglycemia in mice by increasing glucose uptake by adipose tissue and skeletal muscle, and by reducing hepatic glucose output. It is impractical to use Ad36 for therapeutic action. Instead, we investigated if the E4orf1 protein of Ad36, mediates its anti-hyperglycemic action. Such a candidate protein may offer an attractive template for therapeutic development. Experiment-1 determined that Ad36 ‘requires’ E4orf1 protein to up-regulate cellular glucose uptake. Ad36 significantly increased glucose uptake in 3T3-L1 preadipocytes, which was abrogated by knocking down E4orf1 with siRNA. Experiment-2 identified E4orf1 as ‘sufficient’ to up-regulate glucose uptake. 3T3-L1 cells that inducibly express E4orf1, increased glucose uptake in an induction-dependent manner, compared to null vector control cells. E4orf1 up-regulated PI3K pathway and increased abundance of Ras–the obligatory molecule in Ad36-induced glucose uptake. Experiment-3: Signaling studies of cells transiently transfected with E4orf1 or a null vector, revealed that E4orf1 may activate Ras/PI3K pathway by binding to Drosophila discs-large(Dlg1) protein. E4orf1 activated total Ras and, particularly the H-Ras isoform. By mutating the PDZ domain binding motif(PBM) of E4orf1, Experiment-4 showed that E4orf1 requires its PBM to increase Ras activation or glucose uptake. Experiment-5: In-vitro, a transient transfection by E4orf1 significantly increased glucose uptake in preadipocytes, adipocytes, or myoblasts, and reduced glucose output by hepatocytes. Thus, the highly attractive anti-hyperglycemic effect of Ad36 is mirrored by E4orf1 protein, which may offer a novel ligand to develop anti-hyperglycemic drugs.
PLOS ONE | 2012
Emily J. Dhurandhar; Rashmi Krishnapuram; Vijay Hegde; Olga Dubuisson; Rongya Tao; X. Charlie Dong; Jianping Ye; Nikhil V. Dhurandhar
Hepatic steatosis often accompanies obesity and insulin resistance. The cornerstones of steatosis treatment include reducing body weight and dietary fat intake, which are marginally successful over the long term. Ad36, a human adenovirus, may offer a template to overcome these limitations. In vitro and in vivo studies collectively indicate that via its E4orf1 protein, Ad36 improves hyperglycemia, and attenuates hepatic steatosis, despite a high fat diet and without weight loss. Considering that hepatic insulin sensitivity, or the synthesis, oxidation, or export of fatty acid by hepatocytes are the key determinant of hepatic lipid storage, we determined the role of E4orf1 protein in modulating these physiological pathways. For this study, HepG2 cells, or mouse primary hepatocytes were transfected with E4orf1 or the null vector. Glucose output by hepatocytes was determined under gluconeogenic conditions (cAMP and dexamethasone, or glucagon exposure). Also, de-novo lipogenesis, palmitate oxidation, and lipid export as determined by apoB secretion were measured 48 h post transfection. Results show that compared to null vector transfected cells, E4orf1 significantly reduced glucose output in basal and gluconeogenic conditions. E4orf1 reduced de-novo lipogenesis by about 35%, increased complete fatty acid oxidation 2-fold (p<0.0001), and apoB secretion 1.5 fold(p<0.003). Response of key signaling molecules to E4orf1 transfection was in agreement with these findings. Thus, E4orf1 offers a valuable template to exogenously modulate hepatic glucose and lipid metabolism. Elucidating the underlying molecular mechanism may help develop therapeutic approaches for treating diabetes or non-alcoholic fatty liver disease(NAFLD).
Obesity Facts | 2013
Jillon S. Vander Wal; Jean Huelsing; Olga Dubuisson; Nikhil V. Dhurandhar
Objective: Although the human adenovirus 36 (Ad-36) is associated with obesity and relative hypolipidemia, its role in pediatric weight loss treatment response is uncertain. Therefore, the primary study objective was to determine whether Ad-36 antibody (AB) status was associated with response to a pediatric weight loss program. The secondary objective was to assess the association between Ad-36 AB status and baseline lipid values. Methods: Participants included 73 youth aged 10-17 years in a residential camp-based weight loss program. The study examined differences in baseline lipid values between Ad-36 AB+ and AB- youth as well as differences in response to treatment, including indices of body size and fitness. Results: At baseline, results showed that Ad-36 AB+ youth evidenced significantly lower levels of total cholesterol and triglycerides than Ad-36 AB- youth (all p < 0.05). After 4 weeks of treatment, the Ad-36 AB+ youth showed a smaller reduction in BMI percentile than the Ad-36 AB- youth (p < 0.05), a difference of about 0.48 kg. Conclusion: Ad-36 AB status showed a weak association with treatment response, but was associated with a better lipid profile. Ad-36 AB status should be assessed in studies of pediatric obesity treatment and prevention.
International Journal of Obesity | 2013
Yanning Wang; Hui-Hui Wang; Vijay Hegde; Olga Dubuisson; Zhanguo Gao; Nikhil V. Dhurandhar; Jianping Ye
Objective:Obesity is associated with an increase in various pro-inflammatory and anti-inflammatory cytokines, but the interplay of these cytokines is incompletely understood. We conducted experiments to test a broader hypothesis that a dynamic interplay of pro-inflammatory and anti-inflammatory cytokines controls lipid storage in adipocytes.Design:Three experiments were designed to test the overall hypothesis that proinflammatory cytokine (for example, tumor necrosis factor-α (TNF-α) inhibits anti-inflammatory cytokine (for example, adiponectin) activity in an attempt to limit excess lipid accumulation in adipocytes.Results:Experiment one showed that in pro-inflammatory animal models (ap2-P65, ob/ob and high-fat diet-induced obese mice), the increase in TNF-α expression was associated with a decrease in adiponectin expression. Experiment two showed that in 3T3-L1 adipocytes, TNF-α significantly reduced lipid accumulation and glucose uptake induced by adiponectin, and increased lipolysis. Experiment three showed that in 3T3-L1 adipocytes, TNF-α reduced mRNA and protein expression of adiponectin. Adiponectin gene transcription and mRNA stability were both reduced by TNF-α. The expression of peroxisome proliferator-activated receptor gamma, an activator of adiponectin gene promoter, was reduced by TNF-α. The inhibitory activity of TNF-α was blocked by the chemical inhibitors of NF-κB and super suppressor IκBα.Conclusions:TNF-α opposes the action of adiponectin in the regulation of lipid metabolism, and inhibits adiponectin expression at transcriptional and post-transcriptional levels. The results suggest that pro-inflammatory cytokine inhibit anti-inflammatory cytokine in adipocytes to reduce lipid storage. This suggests a potential role of anti-inflammatory cytokines in the control of adipose tissue expansion.
International Journal of Obesity | 2013
Rashmi Krishnapuram; H Kirk-Ballard; Emily J. Dhurandhar; Olga Dubuisson; V Messier; R Rabasa-Lhoret; Vijay Hegde; S Aggarwal; Nikhil V. Dhurandhar
Background:Cellular glucose uptake can be enhanced by upregulating Ras signaling in either insulin-dependent or -independent manner. In presence of insulin and intact insulin signaling, Ras has a negligible role in glucose uptake. Conversely, when insulin signaling is impaired in obesity or diabetes, the insulin-independent Ras pathway may be valuable for enhancing glucose disposal. We previously reported that Ad36, a human adenovirus, enhances cellular glucose uptake by upregulating the Ras/Glut4 pathway. Here, we investigated if Ad36-upregulated Ras via the insulin-independent pathway, to enhance glucose uptake. Furthermore, uncontrolled upregulation of Ras is linked with oncogenic cell transformation, if the tumor-suppressor gene p53 is also downregulated. Hence, we determined if upregulation of Ras by Ad36 would induce oncogenic cell transformation. Finally, we determined the relevance of Ad36 to insulin resistance in humans.Methods:Insulin receptor (IR) was knocked down with small interfering RNA in 3T3-L1 adipocytes, to determine if Ad36 increases the Ras/Glut4 pathway and glucose uptake without IR-signaling. Next, the effects of Ad36 on cell transformation and p53 abundance were determined. Finally, overweight or obese women were screened for seropositivity to Ad36, as an indicator of natural Ad36 infection. Associations of Ad36 infection with adiposity and C-reactive proteins (CRPs)—two key markers of insulin resistance, and with glucose disposal, were determined.Results:Unaffected by IR knock-down, Ad36 significantly increased the Ras pathway, Glut4 translocation and glucose uptake in 3T3-L1 adipocytes. Despite Ras upregulation, Ad36 did not transform 3T3-L1 cells. This may be because Ad36 significantly increased p53 protein in 3T3-L1 cells or mice adipose tissue. Ad36 seropositivity was associated with greater adiposity and CRP levels, yet a significantly higher systemic glucose disposal rate.Conclusions:Overall, the study offers Ras/Glut4 pathway as an alternate to enhance glucose disposal when insulin signaling is impaired, and, importantly, provides Ad36 as a tool to understand the modulation of that pathway.
PLOS ONE | 2013
Rashmi Krishnapuram; Emily J. Dhurandhar; Olga Dubuisson; Vijay Hegde; Nikhil V. Dhurandhar
Impaired glycemic control and excessive adiposity are major risk factors for Type 2 Diabetes mellitus. In rodent models, Ad36, a human adenovirus, improves glycemic control, independent of dietary fat intake or adiposity. It is impractical to use Ad36 for therapeutic action. Instead, we identified that E4orf1 protein of Ad36, mediates its anti-hyperglycemic action independent of insulin signaling. To further evaluate the therapeutic potential of E4orf1 to improve glycemic control, we established a stable 3T3-L1 cell system in which E4orf1 expression can be regulated. The development and characterization of this cell line is described here. Full-length adenoviral-36 E4orf1 cDNA obtained by PCR was cloned into a tetracycline responsive element containing vector (pTRE-Tight-E4orf1). Upon screening dozens of pTRE-Tight-E4orf1 clones, we identified the one with the highest expression of E4orf1 in response to doxycycline treatment. Furthermore, using this inducible system we characterized the ability of E4orf1 to improve glucose disposal in a time dependent manner. This stable cell line offers a valuable resource to carefully study the novel signaling pathways E4orf1 uses to enhance cellular glucose disposal independent of insulin.
Collaboration
Dive into the Olga Dubuisson's collaboration.
University of Texas Health Science Center at San Antonio
View shared research outputs