Olga Fromm
University of Münster
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olga Fromm.
Energy and Environmental Science | 2014
Sergej Rothermel; Paul Meister; Guido Schmuelling; Olga Fromm; Hinrich-W. Meyer; Sascha Nowak; Martin Winter; Tobias Placke
Recently, dual-ion cells based on the anion intercalation into a graphite positive electrode have been proposed as electrochemical energy storage devices. For this technology, in particular electrolytes which display a high stability vs. oxidation are required due to the very high operation potentials of the cathode, which may exceed 5 V vs. Li/Li+. In this work, we present highly promising results for the use of graphite as both the anode and cathode material in a so-called “dual-graphite” or “dual-carbon” cell. A major goal for this system is to find suitable electrolyte mixtures which exhibit not only a high oxidative stability at the cathode but also form a stable solid electrolyte interphase (SEI) at the graphite anode. As an electrolyte system, the ionic liquid-based electrolyte mixture Pyr14TFSI-LiTFSI is used in combination with the SEI-forming additive ethylene sulfite (ES) which allows stable and highly reversible Li+ ion and TFSI− anion intercalation/de-intercalation into/from the graphite anode and cathode, respectively. By addition of ES, also the discharge capacity for the anion intercalation can be remarkably increased from 50 mA h g−1 to 97 mA h g−1. X-ray diffraction studies of the anion intercalation into graphite are conducted in order to understand the influence of the electrolyte additive on the graphite structure and on the cell performance.
Zeitschrift für Physikalische Chemie | 2012
Tobias Placke; Peter Bieker; Simon F. Lux; Olga Fromm; Hinrich-Wilhelm Meyer; Stefano Passerini; Martin Winter
Abstract Electrochemical energy storage systems using graphite as both the negative and the positive electrode have been proposed as “dual-graphite cells”. In this kind of electrochemical system, the electrolyte cations intercalate into the negative electrode and the electrolyte anions intercalate into the positive electrode, both based on graphite, during the charging process. On discharge, cations and anions are released back into the electrolyte. So far, the systems proposed in literature are primarily based on Li+ and PF6- intercalation/de-intercalation into/from graphite from non-aqueous organic solvent based electrolytes. As the positive electrode potential during charging always exceeds 4.2 V vs. Li/Li+, the organic electrolyte starts to decompose at these highly oxidizing conditions resulting in insufficient discharge/charge efficiencies. The replacement of organic solvent by ionic liquids (ILs) leads an increased stability of the electrolyte towards oxidation and thus to remarkably higher efficiencies as well as an increased cycling stability. In fact, ionic liquids provide extended anodic electrochemical stability and in addition, no solvent co-intercalation occurs in parallel to anion intercalation at high potentials. Here, we present highly promising results for “dual-ion cells” based on a graphite cathode and an ionic liquid based electrolyte, namely N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI). As the compatibility of this IL with graphite anodes is poor, alternative anodes such as metallic lithium or lithium titanate (Li4Ti5O12, LTO) are used. Consequently, the “dual-graphite” cell is renamed to “dual-ion” cell. In addition, the calculation of the specific energy of these systems will be in the focus of the discussion.
ACS Applied Materials & Interfaces | 2015
Haiping Jia; Christoph Stock; Richard Kloepsch; Xin He; Juan Pablo Badillo; Olga Fromm; Britta Vortmann; Martin Winter; Tobias Placke
In this work, a novel, porous structured NiSi2/Si composite material with a core-shell morphology was successfully prepared using a facile ball-milling method. Furthermore, the chemical vapor deposition (CVD) method is deployed to coat the NiSi2/Si phase with a thin carbon layer to further enhance the surface electronic conductivity and to mechanically stabilize the whole composite structure. The morphology and porosity of the composite material was evaluated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption measurements (BJH analysis). The as-prepared composite material consists of NiSi2, silicon, and carbon phases, in which the NiSi2 phase is embedded in a silicon matrix having homogeneously distributed pores, while the surface of this composite is coated with a carbon layer. The electrochemical characterization shows that the porous and core-shell structure of the composite anode material can effectively absorb and buffer the immense volume changes of silicon during the lithiation/delithiation process. The obtained NiSi2/Si/carbon composite anode material displays an outstanding electrochemical performance, which gives a stable capacity of 1272 mAh g(-1) for 200 cycles at a charge/discharge rate of 1C and a good rate capability with a reversible capacity of 740 mAh g(-1) at a rate of 5C.
Chemsuschem | 2016
Sebastian Brox; Stephan Röser; Tamara Husch; Stephan Hildebrand; Olga Fromm; Martin Korth; Martin Winter; Isidora Cekic-Laskovic
To identify alternative single-solvent-based electrolytes for application in lithium-ion batteries (LIBs), adequate computational methods were applied to screen specified physicochemical and electrochemical properties of new cyanoester-based compounds. Out of 2747 possible target compounds, two promising candidates and two structurally equivalent components were chosen. A constructive selection process including evaluation of basic physicochemical properties as well assessing the compatibility towards graphitic anodes was initiated to identify the most promising candidates. With addition of a film-forming additive in a low concentration, the most promising candidate showed an adequate long-term cycling stability with LiNi1/3 Mn1/3 Co1/3 O2 [NMC(111)] in a full-cell setup using graphite as anode material. The main advantages of the new electrolyte formulation are related to its good thermal behavior, especially with regard to safety in combination with satisfying electrochemical performance.
Journal of The Electrochemical Society | 2012
Tobias Placke; Olga Fromm; Simon F. Lux; Peter Bieker; Sergej Rothermel; Hinrich-Wilhelm Meyer; Stefano Passerini; Martin Winter
Journal of Power Sources | 2013
Guido Schmuelling; Tobias Placke; Richard Kloepsch; Olga Fromm; Hinrich-Wilhelm Meyer; Stefano Passerini; Martin Winter
Chemistry of Materials | 2014
Haiping Jia; Richard Kloepsch; Xin He; Juan Pablo Badillo; Pengfei Gao; Olga Fromm; Tobias Placke; Martin Winter
Journal of The Electrochemical Society | 2013
Tobias Placke; Sergej Rothermel; Olga Fromm; Paul Meister; Simon F. Lux; Jessica Huesker; Hinrich-Wilhelm Meyer; Martin Winter
Electrochimica Acta | 2014
Paul Meister; Vassilios Siozios; Jakub Reiter; Sebastian Klamor; Sergej Rothermel; Olga Fromm; Hinrich-Wilhelm Meyer; Martin Winter; Tobias Placke
Zeitschrift für anorganische und allgemeine Chemie | 2014
Tobias Placke; Guido Schmuelling; Richard Kloepsch; Paul Meister; Olga Fromm; Peter Hilbig; Hinrich-Wilhelm Meyer; Martin Winter