Olga Garmash
University of Helsinki
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olga Garmash.
Journal of Physical Chemistry A | 2015
Matti P. Rissanen; Theo Kurtén; Mikko Sipilä; Joel A. Thornton; Oskari Kausiala; Olga Garmash; Henrik G. Kjaergaard; Tuukka Petäjä; Douglas R. Worsnop; Mikael Ehn; Markku Kulmala
Formation of highly oxidized, multifunctional products in the ozonolysis of three endocyclic alkenes, 1- methylcyclohexene, 4-methylcyclohexene, and α-pinene, was investigated using a chemical ionization atmospheric pressure interface time-of-flight (CI-APi-TOF) mass spectrometer with a nitrate ion (NO3(-)) based ionization scheme. The experiments were performed in borosilicate glass flow tube reactors at room temperature (T = 293 ± 3 K) and at ambient pressure. An ensemble of oxidized monomer and dimer products was detected, with elemental compositions obtained from the high-resolution mass spectra. The monomer product distributions have O/C ratios from 0.8 to 1.6 and can be explained with an autocatalytic oxidation mechanism (=autoxidation) where the oxygen-centered peroxy radical (RO2) intermediates internally rearrange by intramolecular hydrogen shift reactions, enabling more oxygen molecules to attach to the carbon backbone. Dimer distributions are proposed to form by homogeneous peroxy radical recombination and cross combination reactions. These conclusions were supported by experiments where H atoms were exchanged to D atoms by addition of D2O to the carrier gas flow. Methylcyclohexenes were observed to autoxidize in accordance with our previous work on cyclohexene, whereas in α-pinene ozonolysis different mechanistic steps are needed to explain the products observed.
Geophysical Research Letters | 2017
Taina Yli-Juuti; Aki Pajunoja; Olli-Pekka Tikkanen; Angela Buchholz; C. L. Faiola; Olli Väisänen; Liqing Hao; Eetu Kari; Otso Peräkylä; Olga Garmash; Manabu Shiraiwa; Mikael Ehn; K. E. J. Lehtinen; Annele Virtanen
Abstract Secondary organic aerosols (SOA) forms a major fraction of organic aerosols in the atmosphere. Knowledge of SOA properties that affect their dynamics in the atmosphere is needed for improving climate models. By combining experimental and modeling techniques, we investigated the factors controlling SOA evaporation under different humidity conditions. Our experiments support the conclusion of particle phase diffusivity limiting the evaporation under dry conditions. Viscosity of particles at dry conditions was estimated to increase several orders of magnitude during evaporation, up to 109 Pa s. However, at atmospherically relevant relative humidity and time scales, our results show that diffusion limitations may have a minor effect on evaporation of the studied α‐pinene SOA particles. Based on previous studies and our model simulations, we suggest that, in warm environments dominated by biogenic emissions, the major uncertainty in models describing the SOA particle evaporation is related to the volatility of SOA constituents.
Scientific Reports | 2017
Tuija Jokinen; Jenni Kontkanen; Katrianne Lehtipalo; H. E. Manninen; Juho Aalto; Albert Porcar-Castell; Olga Garmash; Tuomo Nieminen; Mikael Ehn; Juha Kangasluoma; Heikki Junninen; Janne Levula; Jonathan Duplissy; Lauri Ahonen; Pekka Rantala; Liine Heikkinen; Chao Yan; Mikko Sipilä; Douglas R. Worsnop; Jaana Bäck; Tuukka Petäjä; Veli-Matti Kerminen; Markku Kulmala
Solar eclipses provide unique possibilities to investigate atmospheric processes, such as new particle formation (NPF), important to the global aerosol load and radiative balance. The temporary absence of solar radiation gives particular insight into different oxidation and clustering processes leading to NPF. This is crucial because our mechanistic understanding on how NPF is related to photochemistry is still rather limited. During a partial solar eclipse over Finland in 2015, we found that this phenomenon had prominent effects on atmospheric on-going NPF. During the eclipse, the sources of aerosol precursor gases, such as sulphuric acid and nitrogen- containing highly oxidised organic compounds, decreased considerably, which was followed by a reduced formation of small clusters and nanoparticles and thus termination of NPF. After the eclipse, aerosol precursor molecule concentrations recovered and re-initiated NPF. Our results provide direct evidence on the key role of the photochemical production of sulphuric acid and highly oxidized organic compounds in maintaining atmospheric NPF. Our results also explain the rare occurrence of this phenomenon under dark conditions, as well as its seemingly weak connection with atmospheric ions.
Science | 2018
Lei Yao; Olga Garmash; Federico Bianchi; Jun Zheng; Chao Yan; Jenni Kontkanen; Heikki Junninen; Stephany Buenrostro Mazon; Mikael Ehn; Pauli Paasonen; Mikko Sipilä; Mingyi Wang; Xinke Wang; Shan Xiao; Hangfei Chen; Yiqun Lu; Bowen Zhang; Dongfang Wang; Qingyan Fu; Fuhai Geng; Li Li; Hongli Wang; Liping Qiao; Xin Yang; Jianmin Chen; Veli-Matti Kerminen; Tuukka Petäjä; Douglas R. Worsnop; Markku Kulmala; Lin Wang
A puzzle of new particles Atmospheric particulates can be produced by emissions or form de novo. New particle formation usually occurs in relatively clean air. This is because preexisting particles in the atmosphere will scavenge the precursors of new particles and suppress their formation. However, observations in some heavily polluted megacities have revealed substantial rates of new particle formation despite the heavy loads of ambient aerosols. Yao et al. investigated new particle formation in Shanghai and describe the conditions that make this process possible. The findings will help inform policy decisions about how to reduce air pollution in these types of environments. Science, this issue p. 278 Atmospheric new particle formation in heavily polluted cities can occur in certain chemical environments. Atmospheric new particle formation (NPF) is an important global phenomenon that is nevertheless sensitive to ambient conditions. According to both observation and theoretical arguments, NPF usually requires a relatively high sulfuric acid (H2SO4) concentration to promote the formation of new particles and a low preexisting aerosol loading to minimize the sink of new particles. We investigated NPF in Shanghai and were able to observe both precursor vapors (H2SO4) and initial clusters at a molecular level in a megacity. High NPF rates were observed to coincide with several familiar markers suggestive of H2SO4–dimethylamine (DMA)–water (H2O) nucleation, including sulfuric acid dimers and H2SO4-DMA clusters. In a cluster kinetics simulation, the observed concentration of sulfuric acid was high enough to explain the particle growth to ~3 nanometers under the very high condensation sink, whereas the subsequent higher growth rate beyond this size is believed to result from the added contribution of condensing organic species. These findings will help in understanding urban NPF and its air quality and climate effects, as well as in formulating policies to mitigate secondary particle formation in China.
Proceedings of the National Academy of Sciences of the United States of America | 2018
Dominik Stolzenburg; Lukas Fischer; A. Vogel; Martin Heinritzi; Meredith Schervish; Mario Simon; Andrea Christine Wagner; Lubna Dada; Lauri Ahonen; A. Amorim; Andrea Baccarini; Paulus Salomon Bauer; Bernhard Baumgartner; Anton Bergen; Federico Bianchi; Martin Breitenlechner; Sophia Brilke; Stephany Buenrostro Mazon; Dexian Chen; Antonio Dias; Danielle C. Draper; Jonathan Duplissy; Imad El Haddad; Henning Finkenzeller; Carla Frege; Claudia Fuchs; Olga Garmash; H. Gordon; Xucheng He; Johanna Helm
Significance Aerosol particles can form and grow by gas-to-particle conversion and eventually act as seeds for cloud droplets, influencing global climate. Volatile organic compounds emitted from plants are oxidized in the atmosphere, and the resulting products drive particle growth. We measure particle growth by oxidized biogenic vapors with a well-controlled laboratory setup over a wide range of tropospheric temperatures. While higher temperatures lead to increased reaction rates and concentrations of highly oxidized molecules, lower temperatures allow additional, but less oxidized, species to condense. We measure rapid growth over the full temperature range of our study, indicating that organics play an important role in aerosol growth throughout the troposphere. Our finding will help to sharpen the predictions of global aerosol models. Nucleation and growth of aerosol particles from atmospheric vapors constitutes a major source of global cloud condensation nuclei (CCN). The fraction of newly formed particles that reaches CCN sizes is highly sensitive to particle growth rates, especially for particle sizes <10 nm, where coagulation losses to larger aerosol particles are greatest. Recent results show that some oxidation products from biogenic volatile organic compounds are major contributors to particle formation and initial growth. However, whether oxidized organics contribute to particle growth over the broad span of tropospheric temperatures remains an open question, and quantitative mass balance for organic growth has yet to be demonstrated at any temperature. Here, in experiments performed under atmospheric conditions in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN), we show that rapid growth of organic particles occurs over the range from −25 °C to 25 °C. The lower extent of autoxidation at reduced temperatures is compensated by the decreased volatility of all oxidized molecules. This is confirmed by particle-phase composition measurements, showing enhanced uptake of relatively less oxygenated products at cold temperatures. We can reproduce the measured growth rates using an aerosol growth model based entirely on the experimentally measured gas-phase spectra of oxidized organic molecules obtained from two complementary mass spectrometers. We show that the growth rates are sensitive to particle curvature, explaining widespread atmospheric observations that particle growth rates increase in the single-digit-nanometer size range. Our results demonstrate that organic vapors can contribute to particle growth over a wide range of tropospheric temperatures from molecular cluster sizes onward.
Atmospheric Chemistry and Physics | 2017
Federico Bianchi; Olga Garmash; Xucheng He; Chao Yan; Siddharth Iyer; Ida Rosendahl; Zhengning Xu; Matti P. Rissanen; Matthieu Riva; Risto Taipale; Nina Sarnela; Tuukka Petäjä; Douglas R. Worsnop; Markku Kulmala; Mikael Ehn; Heikki Junninen
Atmospheric Chemistry and Physics | 2017
Carla Frege; Ismael K. Ortega; Matti P. Rissanen; Arnaud P. Praplan; Gerhard Steiner; Martin Heinritzi; Lauri Ahonen; A. Amorim; Anne-Kathrin Bernhammer; Federico Bianchi; Sophia Brilke; Martin Breitenlechner; Lubna Dada; Antonio Dias; Jonathan Duplissy; Sebastian Ehrhart; Imad El-Haddad; Lukas Fischer; Claudia Fuchs; Olga Garmash; Marc Gonin; Armin Hansel; C. R. Hoyle; Tuija Jokinen; Heikki Junninen; J. Kirkby; Andreas Kürten; Katrianne Lehtipalo; Markus Leiminger; Roy L. Mauldin
Atmospheric Chemistry and Physics | 2017
Robert Wagner; Chao Yan; Katrianne Lehtipalo; Jonathan Duplissy; Tuomo Nieminen; Juha Kangasluoma; Lauri Ahonen; Lubna Dada; Jenni Kontkanen; H. E. Manninen; Antonio Dias; A. Amorim; Paulus Salomon Bauer; Anton Bergen; Anne-Kathrin Bernhammer; Federico Bianchi; Sophia Brilke; Stephany Buenrostro Mazon; Xuemeng Chen; Danielle C. Draper; Lukas Fischer; Carla Frege; Claudia Fuchs; Olga Garmash; H. Gordon; Jani Hakala; Liine Heikkinen; Martin Heinritzi; Victoria Hofbauer; C. R. Hoyle
Archive | 2016
Tuija Jokinen; Oskari Kausiala; Olga Garmash; Otso Peräkylä; Heikki Junninen; Siegfried Schobesberger; Yan Chao; Mikko Sipilä; Matti P. Rissanen
Atmospheric Chemistry and Physics | 2018
Liqing Hao; Olga Garmash; Mikael Ehn; Pasi Miettinen; Paola Massoli; Santtu Mikkonen; Tuija Jokinen; Pontus Roldin; Pasi Aalto; Taina Yli-Juuti; Jorma Joutsensaari; Tuukka Petäjä; Markku Kulmala; K. E. J. Lehtinen; Douglas R. Worsnop; Annele Virtanen