Olga Gaskova
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olga Gaskova.
American Mineralogist | 2011
Ella V. Sokol; Olga Gaskova; Svetlana N. Kokh; Olga A. Kozmenko; Yuri V. Seryotkin; Yevgeny Vapnik; Michail N. Murashko
Abstract Chromatite (CaCrO4, tetragonal) is mainly known from Cr6+-contaminated soils associated with chromium ore processing residue. This extremely rare mineral was found at the Nabi Musa locality (Judean Desert, Israel), in a peculiar rock complex of the Mottled Zone. We have explored the possible mechanisms responsible for leaching Cr6+ from natural rocks, by means of field observations, batch experiments, thermodynamic modeling, and mineralogical analyses of the Nabi Musa rocks (XRPD, EMPA, SEM, FTIR, and optical microscopy). A remarkable feature of the Mottled Zone rocks is a broad occurrence of high- and ultrahigh-temperature combustion metamorphic rocks, with Cr3+ accumulated mainly in opaque minerals such as Fe-spinel, brownmillerite, and perovskite. Another feature of the Mottled Zone sequence is abundant Cr3+ (bentorite and volkonskoite) and Cr6+ mineralization (Cr6+-bearing ettringite and baryte-hashemite solid solution) in low-temperature hydrothermal veins. Field, mineralogical, and thermodynamic modeling data suggest that Cr was leached from Cr3+-bearing opaque minerals during late hydrothermal alteration of combustion metamorphic rocks by unusual hyperalkaline waters (pH up to 12). The Cr3+ was then oxidized to Cr6+, and subsequently partially immobilized in Cr6+-bearing ettringite. As a consequence of the highway construction across Nabi Musa hill in 2006, the buried veins filled by Cr6+-substituted ettringite were exhumed and exposed to supergene alteration. The ensuing decomposition of Cr6+-bearing ettringite was followed by Cr6+ release into pore waters in rainy seasons, and then by precipitation of chromatite on the evaporation barrier under the hard desert insolation in dry seasons. The chromatite formation has been due to both unique rock and water chemistry of the Mottled Zone sequence and to the arid climate of the Judean Desert.
Applied Geochemistry | 2003
Olga Gaskova; E.P. Bessonova; Svetlana Bortnikova
Abstract The study of inactive As-bearing tailings impoundments at the Khovu-Aksy mine-site (Russia) revealed high concentrations of As in the porewater of tailings solids and in their aqueous extracts, as well as in adjacent soils. In these investigations, experimental leaching of As-containing tailings was performed in the laboratory. The three types of solutions which were used in the leach experiments to model natural waters and waters of anthropogenic origin were H2O, HNO3 and NH4HCO3, and during leaching with these solutions As concentrations were maintained at 10±2, 16±1 and ∼20 mg/l. No low-pH waters were observed at the end of the leach experiments, where pH varied between 8.3 and 9.1. These alkaline pH conditions are attributed to the effect of acid consuming carbonate mineral dissolution reactions, which are also indicated by increased concentrations of Mg and Ca. Also, the solution of certain heavy metals (Co, Ni, Fe) was negligible compared to that of As, and these metals were assumed to have been conserved in the solid phase. Analysis of the leach solutions, and modeling of the results showed that As could be removed from the surface of different particles where it had been adsorbed, and also its concentration could increase with time from the breakdown of Ca(Mg)- and Ni(Co)-arsenate phases. In the absence of an effective remediation program, As release will continue to be an environmental problem.
Doklady Earth Sciences | 2015
Olga Gaskova; A. G. Vladimirov; S. L. Shvartsev; Marina Kolpakova
Highly mineralized closed lakes on the territory of ore regions of Mongolia are of special interest in relation to the search for nonconventional sources of metals. Water of soda Shaazgai-Nuur Lake contains ~1 mg/L U, and the content of the undesirable admixture of As is up to 300 μg/L. Uranium and Arsenic speciation in solution and in the bottom sediments of the lake was estimated using thermodynamic modeling, and a method of their separation was suggested. Calculation of the models of sorption of these elements by goethite and calcite showed that at pH 9.4 typical of natural water it could be effective only at a high concentration of FeOOH sorbent. In this case, at pH <5 and >8 (the area of U sorption), As may be removed by simple filtering of solutions from the suspension upon additional coagulation.
Chinese Journal of Oceanology and Limnology | 2017
Olga Gaskova; D. Vera D.S Strakhovenko; N. I. Ermolaeva; Eugene Yu. Zarubina; Ekaterina A. Ovdina
The Kambala and Barchin brackish lakes (Baraba steppe, southern West Siberia) contain an organic-rich sapropel layer that was formed in oxygen-depleted waters. We measured the bulk sediment elemental composition, the water chemistry and determined the mineralogical composition and predominant biota species (Diatoms and Cyanobacteria in phytoplankton community respectively) in the lakes. The result indicates that the first lake has a siliceous type of sapropel and the second a carbonaceous one. A computer thermodynamic model was developed for chemical interaction in water-bottom sediment systems of the Kambala and Barchin Lakes. The surface sodium bicarbonate waters are supersaturated with respect to calcite, magnesite (or low Mg-calcite), quartz and chlorite with minor strontianite, apatite and goethite (pH 8.9–9.3, Eh 0.3 V). Nevertheless, it is shown that during sapropel deposition, deep silt waters should be anoxic (Eh<0 V). The virtual component CH2O has been used to create an anoxic environment suitable for pyrite formation due to the biotic community impact and abiotic reduction. Thermodynamic calculation has shown that silt water is not necessarily euxinic (anoxic and sulfidic). Depending on Eh, sulfate sulfur can dominate in solution, causing the formation of gypsum together with pyrite. An attempt was made to find a reason for solution supersaturation with respect to Ca and Mg ions due to their complexation with humic acids.
Doklady Earth Sciences | 2014
Ella V. Sokol; Olga Gaskova; Olga A. Kozmenko; Svetlana N. Kokh; E. A. Vapnik; Sofya Novikova; Elena Nigmatulina
This study shows that the mineral assemblages from clastic dikes in areas adjacent to the Dead Sea graben may be considered as natural analogues of alkaline concretes. The main infilling material of the clastic dikes is composed of well-sorted and well-rounded quartz sand. The cement of these hard rocks contains hydroxylapophyllite, tacharanite, calcium silicate hydrates, opal, calcite, and zeolite-like phases, which is indicative of a similarity of the natural cementation processes and industrial alkaline concrete production from quartz sands and industrial alkaline cements. The quartz grains exhibit a variety of reaction textures reflecting the interaction with alkaline solutions (opal and calcium hydrosilicate overgrowths; full replacement with apophyllite or thomsonite + apophyllite). The physicochemical analysis and reconstruction of the chemical composition of peralkaline Ca, Na, and K solutions that formed these assemblages reveal that the solutions evolved toward a more stable composition of zeolite-like phases, which are more resistant to long-term chemical weathering and atmospheric corrosion. The 40Ar/39Ar age of 6.2 ± 0.7 Ma obtained for apophyllite provides conclusive evidence for the high corrosion resistance of the assemblages consisting of apophyllite and zeolite-like phases.
Acta Geologica Sinica-english Edition | 2014
Marina Kolpakova; S. L. Shvartsev; Vitalyi Isupov; Sodov Ariunbileg; A. G. Vladimirov; Olga Gaskova
All the lakes are accumulative systems for the various chemical elements.However,the ratios of the elements in different lake types are very different.It is generally accepted that the composition of lake water determined by
Acta Geologica Sinica-english Edition | 2014
Olga Gaskova; A. G. Vladimirov; S. L. Shvartsev
1 Introduction The attractiveness of Shaazgai-Nuur Soda Lake(pH9.2-9.4)as an alternative metal source is explained by the high concentration of dissolved uranium(~1 mg/l)due to the location of water drainage territory within the Tsagan-
Journal of Geochemical Exploration | 2015
Natalya Abrosimova; Olga Gaskova; Alexandra Loshkareva; Alexey Edelev; Svetlana Bortnikova
Applied Geochemistry | 2012
Svetlana Bortnikova; E.P. Bessonova; Olga Gaskova
Water Security in the Mediterranean Region. An International Evaluation of Management, Control, and Governance Approaches | 2011
Svetlana Bortnikova; Yuri Manstein; Olga Saeva; Natalia Yurkevich; Olga Gaskova; Elizaveta Bessonova; Roman Romanov; N. I. Ermolaeva; Valerii Chernuhin; Aleksandr Reutsky