Olga Girshevitz
Bar-Ilan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olga Girshevitz.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Edo Bar-Zeev; Ilana Berman-Frank; Olga Girshevitz; Tom Berman
Transparent exopolymer particles (TEPs) are planktonic, organic microgels that are ubiquitous in aqueous environments. Increasing evidence indicates that TEPs play an active role in the process of aquatic biofilm formation. Frequently, TEPs are intensely colonized by bacteria and other microorganisms, thus serving as hot spots of intense microbial activity. We introduce the term “protobiofilm” to refer to TEPs with extensive microbial outgrowth and colonization. Such particles display most of the characteristics of developing biofilm, with the exception of being attached to a surface. In this study, coastal seawater was passed through custom-designed flow cells that enabled direct observation of TEPs and protobiofilm in the feedwater stream by bright-field and epifluorescence microscopy. Additionally, we could follow biofilm development on immersed surfaces inside the flow cells. Within minutes, we observed TEP and protobiofilm patches adhering to these surfaces. By 30 min, confocal laser-scanning microscopy (CLSM) revealed numerous patches of Con A and SYTO 9 staining structures covering the surfaces. Atomic force microscopy showed details of a thin, highly sticky, organic conditioning layer between these patches. Bright-field and epifluorescence microscopy and CLSM showed that biofilm development (observed until 24 h) was profoundly inhibited in flow cells with seawater prefiltered to remove most large TEPs and protobiofilm. We propose a revised paradigm for aquatic biofilm development that emphasizes the critical role of microgel particles such as TEPs and protobiofilm in facilitating this process. Recognition of the role of planktonic microgels in aquatic biofilm formation can have applied importance for the water industry.
Journal of The Electrochemical Society | 2009
Hadar Sclar; Daniela Kovacheva; E. Zhecheva; R. Stoyanova; Ronit Lavi; Giora Kimmel; Judith Grinblat; Olga Girshevitz; Francis Amalraj; Ortal Haik; Ella Zinigrad; Boris Markovsky; Doron Aurbach
We report on the behavior of nanometric LiMn 1/3 Ni 1/3 CO 1/3 O 2 (LiMNC) as a cathode material for Li-ion batteries in comparison with the same material with submicrometric particles. The LiMNC material was produced by a self-combustion reaction, and the particle size was controlled by the temperature and duration of the follow-up calcination step. X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared, Raman spectroscopy, electron paramagnetic resonance, inductively coupled plasma, and atomic force microscopy were used in conjunction with standard electrochemical techniques (cyclic voltammetry, chronopotentiometry, and electrochemical impedance spectroscopy) for characterizing the electrode materials. The effect of cycling and aging at 60°C was also explored. Nanomaterials are much more reactive in standard electrolyte solutions than LiMNC with a submicrometric particle. They develop surface films that impede their electrochemical response, while their bulk structure remains stable during aging and cycling at elevated temperatures. The use of nanomaterials in Li-ion batteries is discussed.
Langmuir | 2015
Gil Yeroslavsky; Olga Girshevitz; Juli Foster-Frey; David M. Donovan; Shai Rahimipour
Antibiotic resistance and the colonization of bacteria on surfaces, often as biofilms, prolong hospitalization periods, increase mortality, and are thus major concerns for health care providers. There is an urgent need for antimicrobial and antibiofilm surface treatments that are permanent, can eradicate both biofilms and planktonic pathogens over long periods of time, and do not select for resistant strains. In this study, we have demonstrated a simple, robust, and biocompatible method that utilizes the adhesive property of polydopamine (PDA) to covalently attach the antimicrobial enzyme lysostaphin (Lst) to a variety of surfaces to generate antibacterial and antibiofilm interfaces. The immobilization of the recombinant Lst onto PDA-coated surfaces was carried out under physiological conditions, most probably through the C-terminal His6-tag fragment of the enzyme, minimizing the losses of bioagent activity. The modified surfaces were extensively characterized by X-ray photoelectron spectroscopy and peak force quantitative nanomechanical mapping (PeakForce QNM) AFM-based method, and the presence of Lst on the surfaces was further confirmed immunochemically using anti-Lst antibody. We also found that, in contrast to the physically adsorbed Lst, the covalently attached Lst does not leach from the surfaces and maintains its endopeptidase activity to degrade the staphylococcal cell wall, avoiding most intracellular bacterial resistance mechanisms. Moreover, the Lst-coated surfaces kill hospital strains of Staphylococcus aureus in less than 15 min and prevent biofilm formation. This immobilization method should be applicable also to other proteins and enzymes that are recombinantly expressed to include the His6-tag fragment.
Nature Materials | 2016
Netanel Shpigel; Mikhael D. Levi; Sergey Sigalov; Olga Girshevitz; Doron Aurbach; Leonid Daikhin; Piret Pikma; Margus Marandi; Alar Jänes; Enn Lust; Nicolas Jäckel; Volker Presser
A primary atomic-scale effect accompanying Li-ion insertion into rechargeable battery electrodes is a significant intercalation-induced change of the unit cell volume of the crystalline material. This generates a variety of secondary multiscale dimensional changes and causes a deterioration in the energy storage performance stability. Although traditional in situ height-sensing techniques (atomic force microscopy or electrochemical dilatometry) are able to sense electrode thickness changes at a nanometre scale, they are much less informative concerning intercalation-induced changes of the porous electrode structure at a mesoscopic scale. Based on a electrochemical quartz-crystal microbalance with dissipation monitoring on multiple overtone orders, herein we introduce an in situ hydrodynamic spectroscopic method for porous electrode structure characterization. This new method will enable future developments and applications in the fields of battery and supercapacitor research, especially for diagnostics of viscoelastic properties of binders for composite electrodes and probing the micromechanical stability of their internal electrode porous structure and interfaces.
Biophysical Journal | 2011
Guy Nir; Moshe Lindner; Heidelinde R. C. Dietrich; Olga Girshevitz; Constantinos E. Vorgias; Yuval Garini
HU is a highly conserved protein that is believed to play an important role in the architecture and dynamic compaction of bacterial DNA. Its ability to control DNA bending is crucial for functions such as transcription and replication. The effects of HU on the DNA structure have been studied so far mainly by single molecule methods that require us to apply stretching forces on the DNA and therefore may perturb the DNA-protein interaction. To overcome this hurdle, we study the effect of HU on the DNA structure without applying external forces by using an improved tethered particle motion method. By combining the results with DNA curvature analysis from atomic force microscopy measurements we find that the DNA consists of two different curvature distributions and the measured persistence length is determined by their interplay. As a result, the effective persistence length adopts a bimodal property that depends primarily on the HU concentration. The results can be explained according to a recently suggested model that distinguishes single protein binding from cooperative protein binding.
Angewandte Chemie | 2015
Netanel Shpigel; Mikhael D. Levi; Sergey Sigalov; Olga Girshevitz; Doron Aurbach; Leonid Daikhin; Nicolas Jäckel; Volker Presser
Reversible Li-ion intercalation into composite Li-ion battery (LIB) electrodes is often accompanied by significant dimensional electrode changes (deformation) resulting in significant deterioration of the cycling performance. Viscoelastic properties of polymeric binders affected by intercalation-induced deformation of composite LIB electrodes have never been probed in situ on operating electrochemical cells. Here, we introduce a newly developed noninvasive method, namely electrochemical quartz-crystal microbalance with dissipation monitoring (EQCM-D), for in situ monitoring of elastic properties of polymeric binders during charging of LIB electrodes. As such, we find EQCM-D as a uniquely suitable tool to track the binders structural rigidity/softness in composite Li insertion electrodes in real-time by the characteristic increase/decrease of the dissipation factor during the charging-discharging process. The binders partially swollen in aprotic solutions demonstrate intermediate viscoelastic charge-rate-dependent behavior, revealing rigid/soft behavior at high/low charging rates, respectively. The method can be adjusted for continuous monitoring of elastic properties of the polymeric binders over the entire LIB electrodes cycling life.
ACS Applied Materials & Interfaces | 2015
Katya Gotlib-Vainstein; I. Gouzman; Olga Girshevitz; Asaf Bolker; Nurit Atar; Eitan Grossman; Chaim N. Sukenik
Polyimides are widely used in thermal blankets covering the external surfaces of spacecrafts due to their space durability and their thermo-optical properties. However, they are susceptible to atomic oxygen (AO) erosion, the main hazard of low Earth orbit (LEO), and to electrical charging. This work demonstrates that liquid phase deposition (LPD) of 100 nm of tin oxide creates a protective coating on Kapton polyimide that has good adherence and is effective in preventing AO-induced surface erosion and in reducing electrical charging. The as-deposited tin oxide induces no significant changes in the original thermo-optical properties of the polymer and is effective in preventing electrostatic discharge (ESD). The durability of the oxide coating under AO attack was studied using oxygen RF plasma. The AO exposure did not result in any significant changes in surface morphology, thermo-optical, mechanical, and electrical properties of the tin oxide-coated Kapton. The erosion yield of tin oxide-coated Kapton was negligible after exposure to 6.4 × 10(20) O atoms·cm(-2) of LEO equivalent AO fluence, indicating a complete protection of Kapton by the LPD deposited coating. Moreover, the tin oxide coating is flexible enough so that its electrical conductivity stays within the desired range of antistatic materials despite mechanical manipulations. The advantages of liquid phase deposited oxides in terms of their not being line of site limited are well established. We now extend these advantages to coatings that reduce electrostatic discharge while still providing a high level of protection from AO erosion.
International Journal of Molecular Sciences | 2010
Asaf Shahmoon; Ofer Limon; Olga Girshevitz; Zeev Zalevsky
In this paper, we present the self assembly procedure as well as experimental results of a novel method for constructing well defined arrangements of self assembly metallic nano particles into sophisticated nano structures. The self assembly concept is based on focused ion beam (FIB) technology, where metallic nano particles are self assembled due to implantation of positive gallium ions into the insulating material (e.g., silica as in silicon on insulator wafers) that acts as intermediary layer between the substrate and the negatively charge metallic nanoparticles.
Nucleic Acids Research | 2015
Anastasia Shapiro; Avital Hozeh; Olga Girshevitz; Almogit Abu-Horowitz; Ido Bachelet
DNA origami is a robust method for the fabrication of nanoscale 2D and 3D objects with complex features and geometries. The process of DNA origami folding has been recently studied, however quantitative understanding of it is still elusive. Here, we describe a systematic quantification of the assembly process of DNA nanostructures, focusing on the heterotypic DNA junction—in which arms are unequal—as their basic building block. Using bulk fluorescence studies we tracked this process and identified multiple levels of cooperativity from the arms in a single junction to neighboring junctions in a large DNA origami object, demonstrating that cooperativity is a central underlying mechanism in the process of DNA nanostructure assembly. We show that the assembly of junctions in which the arms are consecutively ordered is more efficient than junctions with randomly-ordered components, with the latter showing assembly through several alternative trajectories as a potential mechanism explaining the lower efficiency. This highlights consecutiveness as a new design consideration that could be implemented in DNA nanotechnology CAD tools to produce more efficient and high-yield designs. Altogether, our experimental findings allowed us to devise a quantitative, cooperativity-based heuristic model for the assembly of DNA nanostructures, which is highly consistent with experimental observations.
Chemistry-an Asian Journal | 2008
Yongdong Jin; Olga Girshevitz; Noga Friedman; Izhar Ron; David Cahen; Mordechai Sheves
The interfacing of functional proteins with solid supports and the study of related protein-adsorption behavior are promising and important for potential device applications. In this study, we describe the preparation of bacteriorhodopsin (bR) monolayers on Br-terminated solid supports through covalent attachment. The bonding, by chemical reaction of the exposed free amine groups of bR with the pendant Br group of the chemically modified solid surface, was confirmed both by negative AFM results obtained when acetylated bR (instead of native bR) was used as a control and by weak bands observed at around 1610 cm(-1) in the FTIR spectrum. The coverage of the resultant bR monolayer was significantly increased by changing the pH of the purple-membrane suspension from 9.2 to 6.8. Although bR, which is an exceptionally stable protein, showed a pronounced loss of its photoactivity in these bR monolayers, it retained full photoactivity after covalent binding to Br-terminated alkyls in solution. Several characterization methods, including atomic force microscopy (AFM), contact potential difference (CPD) measurements, and UV/Vis and Fourier transform infrared (FTIR) spectroscopy, verified that these bR monolayers behaved significantly different from native bR. Current-voltage (I-V) measurements (and optical absorption spectroscopy) suggest that the retinal chromophore is probably still present in the protein, whereas the UV/Vis spectrum suggests that it lacks the characteristic covalent protonated Schiff base linkage. This finding sheds light on the unique interactions of biomolecules with solid surfaces and may be significant for the design of protein-containing device structures.