Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olga Kofronova is active.

Publication


Featured researches published by Olga Kofronova.


Inflammatory Bowel Diseases | 2007

Segmented filamentous bacteria in a defined bacterial cocktail induce intestinal inflammation in SCID mice reconstituted with CD45RBhigh CD4+ T cells

Renata Stepankova; Fiona Powrie; Olga Kofronova; Hana Kozakova; Tomas Hudcovic; Tomas Hrncir; Holm H. Uhlig; Simon Read; Zuzana Rehakova; Oldrich Benada; Pioter Heczko; Magda Strus; Paul W. Bland; Helena Tlaskalova-Hogenova

Background: The aim was to analyze the influence of intestinal microbiota on the development of intestinal inflammation. We used the model of chronic inflammation that develops spontaneously in the colon of conventional severe combined immunodeficiency (SCID) mice restored with the CD45 RBhigh subset of CD4+T cells isolated from the spleen of normal BALB/c mice. Methods: A CD4+CD45RBhigh subpopulation of T cells was purified from the spleen of conventional BALB/c mice by magnetic separation (MACS) and transferred into immunodeficient SCID mice. Germ‐free (GF) SCID mice or SCID mice monoassociated with Enterococcus faecalis, SFB (segmented filamentous bacteria), Fusobacterium mortiferum, Bacteroides distasonis, and in combination Fusobacterium mortiferum + SFB or Bacteroides distasonis + SFB were used as recipients. SCID mice were colonized by a defined cocktail of specific pathogen‐free (SPF) bacteria. Mice were evaluated 8–12 weeks after the cell transfer for clinical and morphological signs of inflammatory bowel disease (IBD). Results: After the transfer of the CD4+CD45RBhigh T‐cell subpopulation to SCID mice severe colitis was present in conventional animals and in mice colonized with a cocktail of SPF microflora plus SFB. Altered intestinal barrier in the terminal ileum of mice with severe colitis was documented by immunohistology using antibodies to ZO‐1 (zona occludens). Conclusions: Only SFB bacteria together with a defined SPF mixture were effective in triggering intestinal inflammation in the model of IBD in reconstituted SCID mice, while no colitis was detected in GF mice or in mice colonized either with SPF microflora or monoassociated only with SFB or colonized by Bacteroides distasonis + SFB or Fusobacterium mortiferum + SFB. (Inflamm Bowel Dis 2007)


PLOS ONE | 2011

Role of Intestinal Bacteria in Gliadin-Induced Changes in Intestinal Mucosa: Study in Germ-Free Rats

Jana Cinova; Giada De Palma; Renata Stepankova; Olga Kofronova; Miloslav Kverka; Yolanda Sanz; Ludmila Tučková

Background and Aims Celiac disease (CD) is a chronic inflammatory disorder of the small intestine that is induced by dietary wheat gluten proteins (gliadins) in genetically predisposed individuals. The overgrowth of potentially pathogenic bacteria and infections has been suggested to contribute to CD pathogenesis. We aimed to study the effects of gliadin and various intestinal bacterial strains on mucosal barrier integrity, gliadin translocation, and cytokine production. Methodology/Principal Findings Changes in gut mucosa were assessed in the intestinal loops of inbred Wistar-AVN rats that were reared under germ-free conditions in the presence of various intestinal bacteria (enterobacteria and bifidobacteria isolated from CD patients and healthy children, respectively) and CD-triggering agents (gliadin and IFN-γ) by histology, scanning electron microscopy, immunofluorescence, and a rat cytokine antibody array. Adhesion of the bacterial strains to the IEC-6 rat cell line was evaluated in vitro. Gliadin fragments alone or together with the proinflammatory cytokine interferon (IFN)-γ significantly decreased the number of goblet cells in the small intestine; this effect was more pronounced in the presence of Escherichia coli CBL2 and Shigella CBD8. Shigella CBD8 and IFN-γ induced the highest mucin secretion and greatest impairment in tight junctions and, consequently, translocation of gliadin fragments into the lamina propria. Shigella CBD8 and E. coli CBL2 strongly adhered to IEC-6 epithelial cells. The number of goblet cells in small intestine increased by the simultaneous incubation of Bifidobacterium bifidum IATA-ES2 with gliadin, IFN-γ and enterobacteria. B. bifidum IATA-ES2 also enhanced the production of chemotactic factors and inhibitors of metalloproteinases, which can contribute to gut mucosal protection. Conclusions Our results suggest that the composition of the intestinal microbiota affects the permeability of the intestinal mucosa and, consequently, could be involved in the early stages of CD pathogenesis.


Journal of Immunology | 2008

Adenylate Cyclase Toxin Subverts Phagocyte Function by RhoA Inhibition and Unproductive Ruffling

Jana Kamanova; Olga Kofronova; Jiri Masin; Harald Genth; Jana Vojtova; Irena Linhartova; Oldrich Benada; Ingo Just; Peter Sebo

Adenylate cyclase toxin (CyaA or ACT) is a key virulence factor of pathogenic Bordetellae. It penetrates phagocytes expressing the αMβ2 integrin (CD11b/CD18, Mac-1 or CR3) and paralyzes their bactericidal capacities by uncontrolled conversion of ATP into a key signaling molecule, cAMP. Using pull-down activity assays and transfections with mutant Rho family GTPases, we show that cAMP signaling of CyaA causes transient and selective inactivation of RhoA in mouse macrophages in the absence of detectable activation of Rac1, Rac2, or RhoG. This CyaA/cAMP-induced drop of RhoA activity yielded dephosphorylation of the actin filament severing protein cofilin and massive actin cytoskeleton rearrangements, which were paralleled by rapidly manifested macrophage ruffling and a rapid and unexpected loss of macropinocytic fluid phase uptake. As shown in this study for the first time, CyaA/cAMP signaling further caused a rapid and near-complete block of complement-mediated phagocytosis. Induction of unproductive membrane ruffling, hence, represents a novel sophisticated mechanism of down-modulation of bactericidal activities of macrophages and a new paradigm for action of bacterial toxins that hijack host cell signaling by manipulating cellular cAMP levels.


Archives of Microbiology | 2001

Stress-response sigma factor σΗ is essential for morphological differentiation of Streptomyces coelicolor A3(2)

Beatrica Sevcikova; Oldrich Benada; Olga Kofronova; Jan Kormanec

Abstract. We previously cloned the sigH gene encoding a stress-response sigma factor σΗ in Streptomyces coelicolor A3(2), located in an operon with the gene encoding proposed anti-sigma factor UshX. To clarify the in vivo function of σΗ, a stable null mutant of sigH was prepared by homologous recombination. This mutation appeared to have no obvious effect on vegetative growth, but dramatically affected morphological differentiation. Microscopy showed that the sigH mutant produced undifferentiated hyphae with rare spore chains, giving the colony a pale gray color compared to the dark gray wild-type spores. The sigH mutation partially affected growth under conditions of high osmolarity. Expression of the sigH operon was investigated in the S. coelicolor sigH mutant. Out of four promoters directing expression of the sigH operon, the sigH-P2 promoter – the only promoter preferentially induced by salt-stress conditions – was inactive in the sigH mutant. The results indicated that the sigH-P2 promoter is dependent (directly or indirectly) upon σΗ and that the operon is autocatalytically activated. We propose that in S. coelicolor σΗ has a dual role, regulating the osmotic response and morphological differentiation.


Journal of Natural Products | 2010

Characterization of pseudacyclins A-E, a suite of cyclic peptides produced by Pseudallescheria boydii.

Kateřina Pavlásková; Jan Nedved; Marek Kuzma; Martin Zabka; M. Sulc; Jan Sklenar; Petr Novák; Oldrich Benada; Olga Kofronova; Marian Hajduch; Peter J. Derrick; Karel Lemr; Alexandr Jegorov; Vladimír Havlíček

Pseudallescheria boydii sensu lato is an emerging fungal pathogen causing fatal infections in both immunocompromised and immunocompetent hosts. In this work, two P. boydii isolates (human and animal origin) have been identified as being producers of cyclic peptides. Five putative nonribosomal peptides with a unique structure, which have been named pseudacyclins, were characterized by nuclear magnetic resonance spectroscopy and mass spectrometry. The most abundant representative of the pseudacyclins was quantified also on fungal spores. The presence of these peptides on inhaled fungal spores creates the possibility for exploitation of pseudacyclins as early indicators of fungal infections caused by Pseudallescheria species.


International Journal of Systematic and Evolutionary Microbiology | 2013

Alloscardovia macacae sp. nov., isolated from the milk of a macaque (Macaca mulatta), emended description of the genus Alloscardovia and proposal of Alloscardovia criceti comb. nov.

Jiří Killer; S. Rockova; Eva Vlková; Vojtěch Rada; Jaroslav Havlik; Jan Kopecny; Věra Bunešová; Oldřich Benada; Olga Kofronova; Radko Pechar; I. Profousova

A novel bacterial strain, designated M8(T), was isolated from milk of a female macaque bred in captivity. The strain was Gram-stain-positive, anaerobic, irregular coccoid-rod-shaped without catalase activity. Analysis of 16S rRNA gene sequence similarity revealed that the isolate was most closely related to Alloscardovia omnicolens CCUG 31649(T) (96.4%) and Metascardovia criceti OMB105(T) (96.6%). Sequences of hsp60, fusA, and xfp genes also confirmed that the strain was most closely related to the type strains of A. omnicolens and M. criceti. The isolate produced fructose-6-phosphate phosphoketolase which is in agreement with classification within the family Bifidobacteriaceae. The major fatty acids were C18 : 1ω9c (35.8%), C16 : 1 (6.2 %) and C14 : 0 (5.7 %). Polar lipid analysis revealed five different glycolipids, two unidentified phospholipids and diphosphatidylglycerol. The peptidoglycan was of the type A4α l-Lys-d-Asp with the presence of d(l)-alanine, d-glutamine, d-asparagine and l-lysine. The DNA G+C content of strain M8(T) was 50.1 mol%. On the basis of genetic, phylogenetic and phenotypic data, strain M8(T) represents a novel species of the genus Alloscardovia for which the name Alloscardovia macacae sp. nov. is proposed. The type strain is M8(T) ( = DSM 24762(T) = CCM 7944(T)). In addition, our results also revealed that Alloscardovia omnicolens DSM 21503(T) and Metascardovia criceti DSM 17774(T) do not belong to different genera within the family Bifidobacteriaceae. We therefore propose to reclassify Metascardovia criceti as Alloscardovia criceti comb. nov. An emended description of the genus Alloscardovia is also provided.


Biochemical and Biophysical Research Communications | 2002

Expression of proteins and protein kinase activity during germination of aerial spores of Streptomyces granaticolor

Karel Mikulík; Jan Bobek; Silvia Bezoušková; Oldrich Benada; Olga Kofronova

Dormant aerial spores of Streptomyces granaticolor contain pre-existing pool of mRNA and active ribosomes for rapid translation of proteins required for earlier steps of germination. Activated spores were labeled for 30 min with [35S]methionine/cysteine in the presence or absence of rifamycin (400 microg/ml) and resolved by two-dimensional electrophoresis. About 320 proteins were synthesized during the first 30 min of cultivation at the beginning of swelling, before the first DNA replication. Results from nine different experiments performed in the presence of rifamycin revealed 15 protein spots. Transition from dormant spores to swollen spores is not affected by the presence of rifamycin but further development of spores is stopped. To support existence of pre-existing pool of mRNA in spores, cell-free extract of spores (S30 fraction) was used for in vitro protein synthesis. These results indicate that RNA of spores possesses mRNA functionally competent and provides templates for protein synthesis. Cell-free extracts isolated from spores, activated spores, and during spore germination were further examined for in vitro protein phosphorylation. The analyses show that preparation from dormant spores catalyzes phosphorylation of only seven proteins. In the absence of phosphatase inhibitors, several proteins were partially dephosphorylated. The activation of spores leads to a reduction in phosphorylation activity. Results from in vitro phosphorylation reaction indicate that during germination phosphorylation/dephosphorylation of proteins is a complex function of developmental changes.


Journal of Proteome Research | 2013

Systems insight into the spore germination of Streptomyces coelicolor.

Eva Strakova; Jan Bobek; Alice Zikova; Pavel Rehulka; Oldrich Benada; Helena Rehulkova; Olga Kofronova; Jiri Vohradsky

An example of bacterium, which undergoes a complex development, is the genus of Streptomyces whose importance lies in their wide capacity to produce secondary metabolites, including antibiotics. In this work, a proteomic approach was applied to the systems study of germination as a transition from dormancy to the metabolically active stage. The protein expression levels were examined throughout the germination time course, the kinetics of the accumulated and newly synthesized proteins were clustered, and proteins detected in each group were identified. Altogether, 104 2DE gel images at 13 time points, from dormant state until 5.5 h of growth, were analyzed. The mass spectrometry identified proteins were separated into functional groups and their potential roles during germination were further assessed. The results showed that the full competence of spores to effectively undergo active metabolism is derived from the sporulation step, which facilitates the rapid initiation of global protein expression during the first 10 min of cultivation. Within the first hour, the majority of proteins were synthesized. From this stage, the full capability of regulatory mechanisms to respond to environmental cues is presumed. The obtained results might also provide a data source for further investigations of the process of germination.


PLOS ONE | 2018

The enzymatic de-epithelialization technique determines denuded amniotic membrane integrity and viability of harvested epithelial cells

Peter Trosan; Ingrida Smeringaiova; Kristyna Brejchova; Jan Bednar; Oldrich Benada; Olga Kofronova; Katerina Jirsova

The human amniotic membrane (HAM) is widely used for its wound healing effect in clinical practice, as a feeder for the cell cultivation, or a source of cells to be used in cell therapy. The aim of this study was to find effective and safe enzymatic HAM de-epithelialization method leading to harvesting of both denuded undamaged HAM and viable human amniotic epithelial cells (hAECs). The efficiency of de-epithelialization using TrypLE Express, trypsin/ ethylenediaminetetraacetic (EDTA), and thermolysin was monitored by hematoxylin and eosin staining and by the measurement of DNA concentration. The cell viability was determined by trypan blue staining. Scanning electron microscopy and immunodetection of collagen type IV and laminin α5 chain were used to check the basement membrane integrity. De-epithelialized hAECs were cultured and their stemness properties and proliferation potential was assessed after each passage. The HAM was successfully de-epithelialized using all three types of reagents, but morphological changes in basement membrane and stroma were observed after the thermolysin application. About 60% of cells remained viable using trypsin/EDTA, approximately 6% using TrypLE Express, and all cells were lethally damaged after thermolysin application. The hAECs isolated using trypsin/EDTA were successfully cultured up to the 5th passage with increasing proliferation potential and decreased stem cell markers expression (NANOG, SOX2) in prolonged cell culture. Trypsin/EDTA technique was the most efficient for obtaining both undamaged denuded HAM and viable hAECs for consequent culture.


Microscopy Research and Technique | 2002

Streptomycetes cultured on glass beads: Sample preparation for SEM

Olga Kofronova; Liem Duy Nguyen; Jaroslav Weiser; Oldrich Benada

Collaboration


Dive into the Olga Kofronova's collaboration.

Top Co-Authors

Avatar

Oldrich Benada

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Jan Bobek

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Jan Kopecny

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Karel Mikulík

Czechoslovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Renata Stepankova

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Silvia Bezoušková

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Alice Zikova

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Eva Strakova

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Eva Vlková

Czech University of Life Sciences Prague

View shared research outputs
Top Co-Authors

Avatar

Hana Kozakova

Academy of Sciences of the Czech Republic

View shared research outputs
Researchain Logo
Decentralizing Knowledge