Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olga Koroleva is active.

Publication


Featured researches published by Olga Koroleva.


Nucleic Acids Research | 2011

Mechanism of RecO recruitment to DNA by single-stranded DNA binding protein

Mikhail Ryzhikov; Olga Koroleva; Dmitri Postnov; Andrew V. Tran; Sergey Korolev

RecO is a recombination mediator protein (RMP) important for homologous recombination, replication repair and DNA annealing in bacteria. In all pathways, the single-stranded (ss) DNA binding protein, SSB, plays an inhibitory role by protecting ssDNA from annealing and recombinase binding. Conversely, SSB may stimulate each reaction through direct interaction with RecO. We present a crystal structure of Escherichia coli RecO bound to the conserved SSB C-terminus (SSB-Ct). SSB-Ct binds the hydrophobic pocket of RecO in a conformation similar to that observed in the ExoI/SSB-Ct complex. Hydrophobic interactions facilitate binding of SSB-Ct to RecO and RecO/RecR complex in both low and moderate ionic strength solutions. In contrast, RecO interaction with DNA is inhibited by an elevated salt concentration. The SSB mutant lacking SSB-Ct also inhibits RecO-mediated DNA annealing activity in a salt-dependent manner. Neither RecO nor RecOR dissociates SSB from ssDNA. Therefore, in E. coli, SSB recruits RMPs to ssDNA through SSB-Ct, and RMPs are likely to alter the conformation of SSB-bound ssDNA without SSB dissociation to initiate annealing or recombination. Intriguingly, Deinococcus radiodurans RecO does not bind SSB-Ct and weakly interacts with the peptide in the presence of RecR, suggesting the diverse mechanisms of DNA repair pathways mediated by RecO in different organisms.


The EMBO Journal | 2007

Structural conservation of RecF and Rad50: implications for DNA recognition and RecF function

Olga Koroleva; Nodar Makharashvili; Charmain T. Courcelle; Justin Courcelle; Sergey Korolev

RecF, together with RecO and RecR, belongs to a ubiquitous group of recombination mediators (RMs) that includes eukaryotic proteins such as Rad52 and BRCA2. RMs help maintain genome stability in the presence of DNA damage by loading RecA‐like recombinases and displacing single‐stranded DNA‐binding proteins. Here, we present the crystal structure of RecF from Deinococcus radiodurans. RecF exhibits a high degree of structural similarity with the head domain of Rad50, but lacks its long coiled‐coil region. The structural homology between RecF and Rad50 is extensive, encompassing the ATPase subdomain and the so‐called ‘Lobe II’ subdomain of Rad50. The pronounced structural conservation between bacterial RecF and evolutionarily diverged eukaryotic Rad50 implies a conserved mechanism of DNA binding and recognition of the boundaries of double‐stranded DNA regions. The RecF structure, mutagenesis of conserved motifs and ATP‐dependent dimerization of RecF are discussed with respect to its role in promoting presynaptic complex formation at DNA damage sites.


Journal of Biological Chemistry | 2005

Crystal structure of a novel shikimate dehydrogenase from haemophilus influenzae.

Sasha Singh; Sergey Korolev; Olga Koroleva; Thomas Zarembinski; Frank R. Collart; Andrzej Joachimiak; Dinesh Christendat

To date two classes of shikimate dehydrogenases have been identified and characterized, YdiB and AroE. YdiB is a bifunctional enzyme that catalyzes the reversible reductions of dehydroquinate to quinate and dehydroshikimate to shikimate in the presence of either NADH or NADPH. In contrast, AroE catalyzes the reversible reduction of dehydroshikimate to shikimate in the presence of NADPH. Here we report the crystal structure and biochemical characterization of HI0607, a novel class of shikimate dehydrogenase annotated as shikimate dehydrogenase-like. The kinetic properties of HI0607 are remarkably different from those of AroE and YdiB. In comparison with YdiB, HI0607 catalyzes the oxidation of shikimate but not quinate. The turnover rate for the oxidation of shikimate is ∼1000-fold lower compared with that of AroE. Phylogenetic analysis reveals three independent clusters representing three classes of shikimate dehydrogenases, namely AroE, YdiB, and this newly characterized shikimate dehydrogenase-like protein. In addition, mutagenesis studies of two invariant residues, Asp-103 and Lys-67, indicate that they are important catalytic groups that may function as a catalytic pair in the shikimate dehydrogenase reaction. This is the first study that describes the crystal structure as well as mutagenesis and mechanistic analysis of this new class of shikimate dehydrogenase.


Journal of Biological Chemistry | 2009

RecR-mediated Modulation of RecF Dimer Specificity for Single- and Double-stranded DNA

Nodar Makharashvili; Tian Mi; Olga Koroleva; Sergey Korolev

RecF pathway proteins play an important role in the restart of stalled replication and DNA repair in prokaryotes. Following DNA damage, RecF, RecR, and RecO initiate homologous recombination (HR) by loading of the RecA recombinase on single-stranded (ss) DNA, protected by ssDNA-binding protein. The specific role of RecF in this process is not well understood. Previous studies have proposed that RecF directs the RecOR complex to boundaries of damaged DNA regions by recognizing single-stranded/double-stranded (ss/ds) DNA junctions. RecF belongs to ABC-type ATPases, which function through an ATP-dependent dimerization. Here, we demonstrate that the RecF of Deinococcus radiodurans interacts with DNA as an ATP-dependent dimer, and that the DNA binding and ATPase activity of RecF depend on both the structure of DNA substrate, and the presence of RecR. We found that RecR interacts as a tetramer with the RecF dimer. RecR increases the RecF affinity to dsDNA without stimulating ATP hydrolysis but destabilizes RecF binding to ssDNA and dimerization, likely due to increasing the ATPase rate. The DNA-dependent binding of RecR to the RecF-DNA complex occurs through specific protein-protein interactions without significant contributions from RecR-DNA interactions. Finally, RecF neither alone nor in complex with RecR preferentially binds to the ss/dsDNA junction. Our data suggest that the specificity of the RecFOR complex toward the boundaries of DNA damaged regions may result from a network of protein-protein and DNA-protein interactions, rather than a simple recognition of the ss/dsDNA junction by RecF.


Nucleic Acids Research | 2013

A dual role for mycobacterial RecO in RecA-dependent homologous recombination and RecA-independent single-strand annealing

Richa Gupta; Mikhail Ryzhikov; Olga Koroleva; Mihaela Unciuleac; Stewart Shuman; Sergey Korolev; Michael S. Glickman

Mycobacteria have two genetically distinct pathways for the homology-directed repair of DNA double-strand breaks: homologous recombination (HR) and single-strand annealing (SSA). HR is abolished by deletion of RecA and reduced in the absence of the AdnAB helicase/nuclease. By contrast, SSA is RecA-independent and requires RecBCD. Here we examine the function of RecO in mycobacterial DNA recombination and repair. Loss of RecO elicits hypersensitivity to DNA damaging agents similar to that caused by deletion of RecA. We show that RecO participates in RecA-dependent HR in a pathway parallel to the AdnAB pathway. We also find that RecO plays a role in the RecA-independent SSA pathway. The mycobacterial RecO protein displays a zinc-dependent DNA binding activity in vitro and accelerates the annealing of SSB-coated single-stranded DNA. These findings establish a role for RecO in two pathways of mycobacterial DNA double-strand break repair and suggest an in vivo function for the DNA annealing activity of RecO proteins, thereby underscoring their similarity to eukaryal Rad52.


Acta Crystallographica Section D-biological Crystallography | 2002

Autotracing of Escherichia coli acetate CoA-transferase α-subunit structure using 3.4 Å MAD and 1.9 Å native data

Sergey Korolev; Olga Koroleva; K. Petterson; M. Gu; Frank R. Collart; Irina Dementieva; A. Joachimiak

The automation of protein structure determination is an essential component for high-throughput structural analysis in protein X-ray crystallography and is a key element in structural genomics. This highly challenging undertaking relies at present on the availability of high-quality native and derivatized protein crystals diffracting to high or moderate resolution, respectively. Obtaining such crystals often requires significant effort. The present study demonstrates that phases obtained at low resolution (>3.0 A) from crystals of SeMet-labeled protein can be successfully used for automated structure determination. The crystal structure of acetate CoA-transferase alpha-subunit was solved using 3.4 A multi-wavelength anomalous dispersion data collected from a crystal containing SeMet-substituted protein and 1.9 A data collected from a native protein crystal.


Nature Communications | 2018

The structure of iPLA2β reveals dimeric active sites and suggests mechanisms of regulation and localization

Konstantin R. Malley; Olga Koroleva; Ian Miller; Ruslan Sanishvili; Christopher M. Jenkins; Richard W. Gross; Sergey Korolev

Calcium-independent phospholipase A2β (iPLA2β) regulates important physiological processes including inflammation, calcium homeostasis and apoptosis. It is genetically linked to neurodegenerative disorders including Parkinson’s disease. Despite its known enzymatic activity, the mechanisms underlying iPLA2β-induced pathologic phenotypes remain poorly understood. Here, we present a crystal structure of iPLA2β that significantly revises existing mechanistic models. The catalytic domains form a tight dimer. They are surrounded by ankyrin repeat domains that adopt an outwardly flared orientation, poised to interact with membrane proteins. The closely integrated active sites are positioned for cooperative activation and internal transacylation. The structure and additional solution studies suggest that both catalytic domains can be bound and allosterically inhibited by a single calmodulin. These features suggest mechanisms of iPLA2β cellular localization and activity regulation, providing a basis for inhibitor development. Furthermore, the structure provides a framework to investigate the role of neurodegenerative mutations and the function of iPLA2β in the brain.Calcium-independent phospholipase A2β (iPLA2β) is involved in many physiological and pathological processes but the underlying mechanisms are largely unknown. Here, the authors present the structure of dimeric iPLA2β, providing insights into the regulation of its activity and cellular localization.


Nature Communications | 2016

A MUB E2 structure reveals E1 selectivity between cognate ubiquitin E2s in eukaryotes

Xiaolong Lu; Konstantin R. Malley; Caitlin C. Brenner; Olga Koroleva; Sergey Korolev; Brian P. Downes

Ubiquitin (Ub) is a protein modifier that controls processes ranging from protein degradation to endocytosis, but early-acting regulators of the three-enzyme ubiquitylation cascade are unknown. Here we report that the prenylated membrane-anchored ubiquitin-fold protein (MUB) is an early-acting regulator of subfamily-specific E2 activation. An AtMUB3:AtUBC8 co-crystal structure defines how MUBs inhibit E2∼Ub formation using a combination of E2 backside binding and a MUB-unique lap-bar loop to block E1 access. Since MUBs tether Arabidopsis group VI E2 enzymes (related to HsUbe2D and ScUbc4/5) to the plasma membrane, and inhibit E2 activation at physiological concentrations, they should function as potent plasma membrane localized regulators of Ub chain synthesis in eukaryotes. Our findings define a biochemical function for MUB, a family of highly conserved Ub-fold proteins, and provide an example of selective activation between cognate Ub E2s, previously thought to be constitutively activated by E1s.


bioRxiv | 2017

A novel dimeric active site and regulation mechanism revealed by the crystal structure of iPLA2β

Konstantin R. Malley; Olga Koroleva; Ian Miller; Ruslan Sanishvili; Christopher M. Jenkins; Richard W. Gross; Sergey Korolev

Calcium-independent phospholipase A2β (iPLA2β) regulates several physiological processes including inflammation, calcium homeostasis and apoptosis. It is linked genetically to neurodegenerative disorders including Parkinson’s disease. Despite its known enzymatic activity, the mechanisms underlying pathologic phenotypes remain unknown. Here, we present the first crystal structure of iPLA2β that significantly revises existing mechanistic models. The catalytic domains form a tight dimer. The ankyrin repeat domains wrap around the catalytic domains in an outwardly flared orientation, poised to interact with membrane proteins. The closely integrated active sites are positioned for cooperative activation and internal transacylation. A single calmodulin binds and allosterically inhibits both catalytic domains. These unique structural features identify the molecular interactions that can regulate iPLA2β activity and its cellular localization, which can be targeted to identify novel inhibitors for therapeutic purposes. The structure provides a well-defined framework to investigate the role of neurodegenerative mutations and the function of iPLA2β in the brain.


Structure | 2004

A Novel Structure of DNA Repair Protein RecO from Deinococcus radiodurans

Nodar Makharashvili; Olga Koroleva; Sibes Bera; Duane P. Grandgenett; Sergey Korolev

Collaboration


Dive into the Olga Koroleva's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian Miller

Saint Louis University

View shared research outputs
Top Co-Authors

Avatar

Christopher M. Jenkins

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Frank R. Collart

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Richard W. Gross

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Ruslan Sanishvili

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrzej Joachimiak

Argonne National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge