Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olga Lopatina is active.

Publication


Featured researches published by Olga Lopatina.


Nature | 2007

CD38 is critical for social behaviour by regulating oxytocin secretion

Duo Jin; Hong-Xiang Liu; Hirokazu Hirai; Takashi Torashima; Taku Nagai; Olga Lopatina; Natalia A. Shnayder; Kiyofumi Yamada; Mami Noda; Toshihiro Seike; Kyota Fujita; Shin Takasawa; Shigeru Yokoyama; Keita Koizumi; Yoshitake Shiraishi; Shigenori Tanaka; Minako Hashii; Toru Yoshihara; Kazuhiro Higashida; Mohammad Saharul Islam; Nobuaki Yamada; Kenshi Hayashi; Naoya Noguchi; Ichiro Kato; Hiroshi Okamoto; Akihiro Matsushima; Alla B. Salmina; Toshio Munesue; Nobuaki Shimizu; Sumiko Mochida

CD38, a transmembrane glycoprotein with ADP-ribosyl cyclase activity, catalyses the formation of Ca2+ signalling molecules, but its role in the neuroendocrine system is unknown. Here we show that adult CD38 knockout (CD38-/-) female and male mice show marked defects in maternal nurturing and social behaviour, respectively, with higher locomotor activity. Consistently, the plasma level of oxytocin (OT), but not vasopressin, was strongly decreased in CD38-/- mice. Replacement of OT by subcutaneous injection or lentiviral-vector-mediated delivery of human CD38 in the hypothalamus rescued social memory and maternal care in CD38-/- mice. Depolarization-induced OT secretion and Ca2+ elevation in oxytocinergic neurohypophysial axon terminals were disrupted in CD38-/- mice; this was mimicked by CD38 metabolite antagonists in CD38+/+ mice. These results reveal that CD38 has a key role in neuropeptide release, thereby critically regulating maternal and social behaviours, and may be an element in neurodevelopmental disorders.


Neuroscience Research | 2010

Two genetic variants of CD38 in subjects with autism spectrum disorder and controls.

Toshio Munesue; Shigeru Yokoyama; Kazuhiko Nakamura; Ayyappan Anitha; Kazuo Yamada; Kenshi Hayashi; Tomoya Asaka; Hong-Xiang Liu; Duo Jin; Keita Koizumi; Mohammad Saharul Islam; Jian Jun Huang; Wen Jie Ma; Uh Hyun Kim; Sun Jun Kim; Keunwan Park; Dongsup Kim; Mitsuru Kikuchi; Yasuki Ono; Hideo Nakatani; Shiro Suda; Taishi Miyachi; Hirokazu Hirai; Alla B. Salmina; Yu A. Pichugina; Andrei A. Soumarokov; Nori Takei; Norio Mori; Masatsugu Tsujii; Toshiro Sugiyama

The neurobiological basis of autism spectrum disorder (ASD) remains poorly understood. Given the role of CD38 in social recognition through oxytocin (OT) release, we hypothesized that CD38 may play a role in the etiology of ASD. Here, we first examined the immunohistochemical expression of CD38 in the hypothalamus of post-mortem brains of non-ASD subjects and found that CD38 was colocalized with OT in secretory neurons. In studies of the association between CD38 and autism, we analyzed 10 single nucleotide polymorphisms (SNPs) and mutations of CD38 by re-sequencing DNAs mainly from a case-control study in Japan, and Caucasian cases mainly recruited to the Autism Genetic Resource Exchange (AGRE). The SNPs of CD38, rs6449197 (p<0.040) and rs3796863 (p<0.005) showed significant associations with a subset of ASD (IQ>70; designated as high-functioning autism (HFA)) in the U.S. 104 AGRE family trios, but not with Japanese 188 HFA subjects. A mutation that caused tryptophan to replace arginine at amino acid residue 140 (R140W; (rs1800561, 4693C>T)) was found in 0.6-4.6% of the Japanese population and was associated with ASD in the smaller case-control study. The SNP was clustered in pedigrees in which the fathers and brothers of T-allele-carrier probands had ASD or ASD traits. In this cohort OT plasma levels were lower in subjects with the T allele than in those without. One proband with the T allele who was taking nasal OT spray showed relief of symptoms. The two variant CD38 poloymorphysms tested may be of interest with regard of the pathophysiology of ASD.


Journal of Neuroendocrinology | 2010

Oxytocin signal and social behaviour: comparison among adult and infant oxytocin, oxytocin receptor and CD38 gene knockout mice.

Haruhiro Higashida; Olga Lopatina; Toru Yoshihara; Yu A. Pichugina; Andrei A. Soumarokov; Toshio Munesue; Yoshio Minabe; Mitsuru Kikuchi; Yasuki Ono; N. Korshunova; Alla B. Salmina

Oxytocin in the hypothalamus is the biological basis of social recognition, trust, love and bonding. Previously, we showed that CD38, a proliferation marker in leukaemia cells, plays an important role in the hypothalamus in the process of oxytocin release in adult mice. Disruption of Cd38 (Cd38 −/−) elicited impairment of maternal behaviour and male social recognition in adult mice, similar to the behaviour observed in Oxt and oxytocin receptor (Oxtr) gene knockout (Oxt −/− and Oxtr −/−, respectively) mice. Locomotor activity induced by separation from the dam was higher and the number of ultrasonic vocalisation calls was lower in Cd38 −/− than Cd38 +/+ pups. However, these behavioural changes were much milder than those observed in Oxt −/− and Oxtr −/− mice, indicating less impairment of social behaviour in Cd38 −/− pups. These phenotypes appeared to be caused by the high plasma oxytocin levels during development from the neonatal period to 3‐week‐old juvenile mice. ADP‐ribosyl cyclase activity was markedly lower in the knockout mice from birth, suggesting that weaning for mice is a critical time window of plasma oxytocin differentiation. Breastfeeding was an important exogenous source of plasma oxytocin regulation before weaning as a result of the presence of oxytocin in milk and the dam’s mammary glands. The dissimilarity between Cd38 −/− infant behaviour and those of Oxt −/− or Oxtr −/− mice can be explained partly by this exogenous source of oxytocin. These results suggest that secretion of oxytocin into the brain in a CD38‐dependent manner may play an important role in the development of social behaviour.


Neurochemistry International | 2007

Cyclic ADP-ribose as a universal calcium signal molecule in the nervous system

Haruhiro Higashida; Alla B. Salmina; Raissa Ya. Olovyannikova; Minako Hashii; Shigeru Yokoyama; Keita Koizumi; Duo Jin; Hong-Xiang Liu; Olga Lopatina; Sarwat Amina; Mohammad Saharul Islam; Jian-Jun Huang; Mami Noda

beta-NAD(+) is as abundant as ATP in neuronal cells. beta-NAD(+) functions not only as a coenzyme but also as a substrate. beta-NAD(+)-utilizing enzymes are involved in signal transduction. We focus on ADP-ribosyl cyclase/CD38 which synthesizes cyclic ADP-ribose (cADPR), a universal Ca(2+) mobilizer from intracellular stores, from beta-NAD(+). cADPR acts through activation/modulation of ryanodine receptor Ca(2+) releasing Ca(2+) channels. cADPR synthesis in neuronal cells is stimulated or modulated via different pathways and various factors. Subtype-specific coupling of various neurotransmitter receptors with ADP-ribosyl cyclase confirms the involvement of the enzyme in signal transduction in neurons and glial cells. Moreover, cADPR/CD38 is critical in oxytocin release from the hypothalamic cell dendrites and nerve terminals in the posterior pituitary. Therefore, it is possible that pharmacological manipulation of intracellular cADPR levels through ADP-ribosyl cyclase activity or synthetic cADPR analogues may provide new therapeutic opportunities for treatment of neurodevelopmental disorders.


Neuroscience Letters | 2008

Locomotor activity, ultrasonic vocalization and oxytocin levels in infant CD38 knockout mice

Hong-Xiang Liu; Olga Lopatina; Chiharu Higashida; Takahiro Tsuji; Ichiro Kato; Shin Takasawa; Hiroshi Okamoto; Shigeru Yokoyama; Haruhiro Higashida

Oxytocin (OT), a neurohormone involved in reproduction, plays a critical role in social behavior in a wide range of mammalian species from rodents to humans. The role of CD38 in regulating OT secretion for social behavior has been demonstrated in adult mice, but has not been examined in pups or during development. Separation from the dam induces stress in 7-day-old mouse pups. During such isolation, locomotor activity was higher in CD38 knockout (CD38(-/-)) pups than in wild-type (CD38(+/+)) or heterozygous (CD38(+/-)) controls. The number of ultrasonic vocalizations was lower in CD38(-/-) pups than in CD38(+/+) pups. However, the difference between the two genotypes was less severe than that in OT knockout or OT receptor knockout mice. To explain this, we measured plasma OT levels. The level was not lower in CD38(-/-) pups during the period 1-3 weeks after birth, but was significantly reduced after weaning (>3 weeks). ADP-ribosyl cyclase activities in the hypothalamus and pituitary were markedly lower from 1 week after birth in CD38(-/-) mice and were consistently lower thereafter to the adult stage (2 months old). These results showed that the reduced severity of behavioral abnormalities in CD38(-/-) pups was due to partial compensation by the high level of plasma OT.


Nature Communications | 2013

Displays of paternal mouse pup retrieval following communicative interaction with maternal mates

Hong-Xiang Liu; Olga Lopatina; Chiharu Higashida; Hiroko Fujimoto; Shirin Akther; Alena Inzhutova; Mingkun Liang; Jing Zhong; Takahiro Tsuji; Toru Yoshihara; Kohei Sumi; Mizuho Ishiyama; Wen-Jie Ma; Mitsunori Ozaki; Satoshi Yagitani; Shigeru Yokoyama; Naofumi Mukaida; Takeshi Sakurai; Osamu Hori; Katsuji Yoshioka; Atsushi Hirao; Yukio Kato; Katsuhiko Ishihara; Ichiro Kato; Hiroshi Okamoto; Stanislav M. Cherepanov; Alla B. Salmina; Hirokazu Hirai; Masahide Asano; David A. Brown

Compared with the knowledge of maternal care, much less is known about the factors required for paternal parental care. Here we report that new sires of laboratory mice, though not spontaneously parental, can be induced to show maternal-like parental care (pup retrieval) using signals from dams separated from their pups. During this interaction, the maternal mates emit 38-kHz ultrasonic vocalizations to their male partners, which are equivalent to vocalizations that occur following pheromone stimulation. Without these signals or in the absence of maternal mates, the sires do not retrieve their pups within 5 min. These results show that, in mice, the maternal parent communicates to the paternal parent to encourage pup care. This new paradigm may be useful in the analysis of the parental brain during paternal care induced by interactive communication.


Frontiers in Behavioral Neuroscience | 2014

Anxiety- and depression-like behavior in mice lacking the CD157/BST1 gene, a risk factor for Parkinson's disease

Olga Lopatina; Toru Yoshihara; Tomoko Nishimura; Jing Zhong; Shirin Akther; Azam Akm Fakhrul; Mingkun Liang; Chiharu Higashida; Kohei Sumi; Kazumi Furuhara; Yuki Inahata; Jian-Jung Huang; Keita Koizumi; Shigeru Yokoyama; Takahiro Tsuji; Yulia Petugina; Andrei Sumarokov; Alla B. Salmina; Koji Hashida; Yasuko Kitao; Osamu Hori; Masahide Asano; Yoji Kitamura; Takashi Kozaka; Kazuhiro Shiba; Fangfang Zhong; Min-Jue Xie; Makoto Sato; Katsuhiko Ishihara; Haruhiro Higashida

CD157, known as bone marrow stromal cell antigen-1, is a glycosylphosphatidylinositol-anchored ADP-ribosyl cyclase that supports the survival and function of B-lymphocytes and hematopoietic or intestinal stem cells. Although CD157/Bst1 is a risk locus in Parkinsons disease (PD), little is known about the function of CD157 in the nervous system and contribution to PD progression. Here, we show that no apparent motor dysfunction was observed in young knockout (CD157−/−) male mice under less aging-related effects on behaviors. CD157−/− mice exhibited anxiety-related and depression-like behaviors compared with wild-type mice. These behaviors were rescued through treatment with anti-psychiatric drugs and oxytocin. CD157 was weakly expressed in the amygdala and c-Fos immunoreactivity in the amygdala was less evident in CD157−/− mice than in wild-type mice. These results demonstrate for the first time that CD157 plays a role as a neuro-regulator and suggest a potential role in pre-motor symptoms in PD.


Neuropharmacology | 2010

Oxytocin-induced elevation of ADP-ribosyl cyclase activity, cyclic ADP-riboseor Ca2+ concentrations is involved in autoregulation of oxytocin secretionin the hypothalamus and posterior pituitary in male mice

Olga Lopatina; Hong-Xiang Liu; Sarwat Amina; Minako Hashii; Haruhiro Higashida

Locally released oxytocin (OT) activates OT receptors (2.1:OXY:1:OT:) in neighboring neurons in the hypothalamus and their terminals in the posterior pituitary, resulting in further OT release, best known in autoregulation occurring during labor or milk ejection in reproductive females. OT also plays a critical role in social behavior of non-reproductive females and even in males in mammals from rodents to humans. Social behavior is disrupted when elevation of free intracellular Ca(2+) concentration ([Ca(2+)](i)) and OT secretion are reduced in male and female CD38 knockout mice. Therefore, it is interesting to investigate whether ADP-ribosyl cyclase-dependent signaling is involved in OT-induced OT release for social recognition in males, independent from female reproduction, and to determine its molecular mechanism. Here, we report that ADP-ribosyl cyclase activity was increased by OT in crude membrane preparations of the hypothalamus and posterior pituitary in male mice, and that OT elicited an increase in [Ca(2+)](i) in the isolated terminals over a period of 5 min. The increases in cyclase and [Ca(2+)](i) were partially inhibited by nonspecific protein kinase inhibitors and a protein kinase C specific inhibitor, calphostin C. Subsequently, OT-induced OT release was also inhibited by calphostin C to levels inhibited by vasotocin, an OT receptor antagonist, and 8-bromo-cADP-ribose. These results demonstrate that OT receptors are functionally coupled to membrane-bound ADP-ribosyl cyclase and/or CD38 and suggest that cADPR-mediated intracellular calcium signaling is involved in autoregulation of OT release, which is sensitive to protein kinase C, in the hypothalamus and neurohypophysis in male mice.


Molecular Brain | 2013

CD38 in the nucleus accumbens and oxytocin are related to paternal behavior in mice

Shirin Akther; Natalia Korshnova; Jing Zhong; Mingkun Liang; Stanislav M. Cherepanov; Olga Lopatina; Yulia K. Komleva; Alla B. Salmina; Tomoko Nishimura; Azam Akm Fakhrul; Hirokazu Hirai; Ichiro Kato; Yasuhiko Yamamoto; Shin Takasawa; Hiroshi Okamoto; Haruhiro Higashida

BackgroundMammalian sires participate in infant care. We previously demonstrated that sires of a strain of nonmonogamous laboratory mice initiate parental retrieval behavior in response to olfactory and auditory signals from the dam during isolation in a new environment. This behavior is rapidly lost in the absence of such signals when the sires are caged alone. The neural circuitry and hormones that control paternal behavior are not well-understood. CD38, a membrane glycoprotein, catalyzes synthesis of cyclic ADP-ribose and facilitates oxytocin (OT) secretion due to cyclic ADP-ribose-dependent increases in cytosolic free calcium concentrations in oxytocinergic neurons in the hypothalamus. In this paper, we studied CD38 in the nucleus accumbens (NAcc) and the role of OT on paternal pup retrieval behavior using CD38 knockout (CD38−/−) mice of the ICR strain.ResultsCD38−/− sires failed to retrieve when they were reunited with their pups after isolation together with the mate dams, but not with pup, in a novel cage for 10 min. CD38−/− sires treated with a single subcutaneous injection of OT exhibited recovery in the retrieval events when caged with CD38−/− dams treated with OT. We introduced human CD38 in the NAcc of CD38−/− sires using a lentiviral infection technique and examined the effects of local expression of CD38. Pairs of knockout dams treated with OT and sires expressing CD38 in the NAcc showed more retrieval (83% of wild-type sire levels). Complete recovery of retrieval was obtained in sires with the expression of CD38 in the NAcc in combination with OT administration. Other paternal behaviors, including pup grooming, crouching and huddling, were also more common in CD38−/− sires with CD38 expression in the NAcc compared with those in CD38−/− sires without CD38 expression in the NAcc.ConclusionsCD38 in the NAcc and OT are critical in paternal behavior.


Journal of Neuroendocrinology | 2010

Intracellular Calcium Elevation Induced by Extracellular Application of Cyclic‐ADP‐Ribose or Oxytocin is Temperature‐Sensitive in Rodent NG108‐15 Neuronal Cells with or without Exogenous Expression of Human Oxytocin Receptors

Sarwat Amina; Minako Hashii; Wen-Jie Ma; Shigeru Yokoyama; Olga Lopatina; Hong-Xiang Liu; Mohammad Saharul Islam; Haruhiro Higashida

ADP‐ribosyl cyclase and/or CD38 are activated after oxytocin receptor stimulation in the hypothalamus and pituitary in adult mice, leading to facilitation of oxytocin secretion. Although cyclic adenosine 5′‐diphosphoribose (cADPR) primarily acts as an intracellular second messenger, it has been suggested that extracellular cADPR stimulates intracellular ryanodine receptors after internalisation via the nucleotide‐transporting capacity of CD38 in fibroblasts and astrocytes. However, little is known about whether extracellular cADPR activates neurones. To address this question, we used a model neuronal cell line, NG108‐15 mouse neuroblastoma × rat glioma hybrid cells possessing CD38 but not oxytocin receptors, and measured cytosolic free calcium concentrations ([Ca2+]i). Extracellular application of cADPR to NG108‐15 cells elevated [Ca2+]i at 35 °C. The elevation was significantly enhanced when measured at 40 °C. The cADPR and heat‐induced [Ca2+]i increase were blocked under extracellular Ca2+‐free conditions and by 2‐aminoethoxydiphenyl borate, an antagonist of melastatin‐related transient receptor potential channel 2 (TRPM2) cation channels. Reverse transcriptation‐polymerase chain reaction analyses indicated that TRPM2 channels were expressed in NG108‐15 cells. Application of oxytocin elevated [Ca2+]i in NG108‐15 cells transformed to transiently express cloned human oxytocin receptors. The oxytocin‐induced [Ca2+]i response was also enhanced by heat. These results indicate that the extracellular application of cADPR, together with heat, activates cation influx downstream of oxytocin receptor signalling in NG108‐15 neuronal cells, and suggest the possible involvement of TRPM2 channels in oxytocin release in the mammalian brain.

Collaboration


Dive into the Olga Lopatina's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge