Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olga M. Ocón-Grove is active.

Publication


Featured researches published by Olga M. Ocón-Grove.


Reproduction | 2008

Gonadotropin-inhibitory hormone (GnIH) receptor gene is expressed in the chicken ovary: potential role of GnIH in follicular maturation

Sreenivasa R. Maddineni; Olga M. Ocón-Grove; Susan M. Krzysik-Walker; Gilbert L. Hendricks

Gonadotropin-inhibitory hormone (GnIH), an RFamide peptide, has been found to inhibit pituitary LH secretion in avian and mammalian species. The gene encoding a putative receptor for GnIH (GnIHR) was recently identified in the chicken and Japanese quail brain and pituitary gland. GnIHR appears to be a seven-transmembrane protein belonging to a family of G-protein-coupled receptors. In the present study, we have characterized the expression of GnIHR mRNA in the chicken ovary and demonstrate that GnIHR may exert an inhibitory effect on ovarian follicular development. By RT-PCR, we detected GnIHR mRNA in the chicken testis and in the ovary, specifically both thecal and granulosa cell layers. Real-time quantitative PCR analysis revealed greater GnIHR mRNA quantity in theca cells of prehierarchial follicles compared with that of preovulatory follicles. GnIHR mRNA quantity was significantly decreased in sexually mature chicken ovaries versus ovaries of sexually immature chickens. Estradiol (E(2)) and/or progesterone (P(4)) treatment of sexually immature chickens significantly decreased ovarian GnIHR mRNA abundance. Treatment of prehierarchial follicular granulosa cells in vitro with chicken GnIH peptide significantly decreased basal but not FSH-stimulated cellular viability. Collectively, our results indicate that the ovarian GnIHR is likely to be involved in ovarian follicular development. A decrease in ovarian GnIHR mRNA abundance due to sexual maturation or by E(2) and/or P(4) treatment would implicate an inhibitory role for GnIHR in ovarian follicular development. Furthermore, GnIH may affect follicular maturation by decreasing the viability of prehierarchial follicular granulosa cells through binding to GnIHR.


Journal of Neuroendocrinology | 2008

Gonadotrophin‐Inhibitory Hormone Receptor Expression in the Chicken Pituitary Gland: Potential Influence of Sexual Maturation and Ovarian Steroids

Sreenivasa R. Maddineni; Olga M. Ocón-Grove; Susan M. Krzysik-Walker; Gilbert L. Hendricks; John A. Proudman

Gonadotrophin‐inhibitory hormone (GnIH), a hypothalamic RFamide, has been found to inhibit gonadotrophin secretion from the anterior pituitary gland originally in birds and, subsequently, in mammalian species. The gene encoding a transmembrane receptor for GnIH (GnIHR) was recently identified in the brain, pituitary gland and gonads of song bird, chicken and Japanese quail. The objectives of the present study are to characterise the expression of GnIHR mRNA and protein in the chicken pituitary gland, and to determine whether sexual maturation and gonadal steroids influence pituitary GnIHR mRNA abundance. GnIHR mRNA quantity was found to be significantly higher in diencephalon compared to either anterior pituitary gland or ovaries. GnIHR mRNA quantity was significantly higher in the pituitaries of sexually immature chickens relative to sexually mature chickens. Oestradiol or a combination of oestradiol and progesterone treatment caused a significant decrease in pituitary GnIHR mRNA quantity relative to vehicle controls. GnIHR‐immunoreactive (ir) cells were identified in the chicken pituitary gland cephalic and caudal lobes. Furthermore, GnIHR‐ir cells were found to be colocalised with luteinising hormone (LH)β mRNA‐, or follicle‐stimulating hormone (FSH)β mRNA‐containing cells. GnIH treatment significantly decreased LH release from anterior pituitary gland slices collected from sexually immature, but not from sexually mature chickens. Taken together, GnIHR gene expression is possibly down regulated in response to a surge in circulating oestradiol and progesterone levels as the chicken undergoes sexual maturation to allow gonadotrophin secretion. Furthermore, GnIHR protein expressed in FSHβ or LHβ mRNA‐containing cells is likely to mediate the inhibitory effect of GnIH on LH and FSH secretion.


Reproduction | 2008

Adiponectin and its receptors are expressed in the chicken testis: influence of sexual maturation on testicular ADIPOR1 and ADIPOR2 mRNA abundance.

Olga M. Ocón-Grove; Susan M. Krzysik-Walker; Sreenivasa R. Maddineni; Gilbert L. Hendricks

Adiponectin is an adipokine hormone that influences glucose utilization, insulin sensitivity, and energy homeostasis by signaling through two distinct receptors, ADIPOR1 and ADIPOR2. While adipose tissue is the primary site of adiponectin expression in the chicken, we previously reported that adiponectin and its receptors are expressed in several other tissues. The objectives of the present study are to characterize adiponectin, ADIPOR1, and ADIPOR2 expressions in the chicken testis and to determine whether sexual maturation affects the abundance of testicular adiponectin, ADIPOR1, and ADIPOR2 mRNAs. By RT-PCR and nucleotide sequencing, testicular adiponectin, ADIPOR1, and ADIPOR2 mRNAs were found to be identical to that expressed in the abdominal fat pad. Using anti-chicken adiponectin, ADIPOR1, or ADIPOR2 antibodies and immunohistochemistry, adiponectin-immunoreactive (ir) and ADIPOR1-ir cells were found exclusively in the peritubular cells as well as in Leydig cells. However, ADIPOR2-ir cells were found in the adluminal and luminal compartments of the seminiferous tubules as well as in interstitial cells. In particular, Sertoli cell syncytia, round spermatids, elongating spermatids, spermatozoa, and Leydig cells showed strong ADIPOR2 immunoreactivity. Using quantitative real-time PCR analyses, testicular ADIPOR1 and ADIPOR2 mRNA abundance were found to be 8.3- and 9-fold higher (P<0.01) in adult chickens compared with prepubertal chickens respectively, suggesting that sexual maturation is likely to be associated with an up-regulation of testicular ADIPOR1 and ADIPOR2 gene expressions. Collectively, our results indicate that adiponectin and its receptors are expressed in the chicken testis, where they are likely to influence steroidogenesis, spermatogenesis, Sertoli cell function as well as spermatozoa motility.


Reproduction | 2012

Bone morphogenetic protein 6 promotes FSH receptor and anti-Müllerian hormone mRNA expression in granulosa cells from hen prehierarchal follicles

Olga M. Ocón-Grove; Daniel H. Poole; A. L. Johnson

A growing body of literature provides evidence of a prominent role for bone morphogenetic proteins (BMPs) in regulating various stages of ovarian follicle development. Several actions for BMP6 have been previously reported in the hen ovary, yet only within postselection (preovulatory) follicles. The initial hypothesis tested herein is that BMP6 increases FSH receptor (FSHR) mRNA expression within the granulosa layer of prehierarchal (6-8 mm) follicles (6-8 GC). BMP6 mRNA is expressed at higher levels within undifferentiated (1-8 mm) follicles compared with selected (≥9 mm) follicles. Recombinant human (rh) BMP6 initiates SMAD1, 5, 8 signaling in cultured 6-8 GC and promotes FSHR mRNA expression in a dose-related fashion. In addition, a 21 h preculture with rhBMP6 followed by a 3 h challenge with FSH increases cAMP accumulation, STAR (StAR) expression, and progesterone production. Interestingly, rhBMP6 also increases expression of anti-Müllerian hormone (AMH) mRNA in cultured 6-8 GC. This related BMP family member has previously been implicated in negatively regulating FSH responsiveness during follicle development. Considering these data, we propose that among the paracrine and/or autocrine actions of BMP6 within prehierarchal follicles is the maintenance of both FSHR and AMH mRNA expression. We predict that before follicle selection, one action of AMH within granulosa cells from 6 to 8 mm follicles is to help suppress FSHR signaling and prevent premature granulosa cell differentiation. At the time of selection, we speculate that the yet undefined signal directly responsible for selection initiates FSH responsiveness. As a result, FSH signaling suppresses AMH expression and initiates the differentiation of granulosa within the selected follicle.


Biology of Reproduction | 2013

Bone Morphogenetic Protein 4 Supports the Initial Differentiation of Hen (Gallus gallus) Granulosa Cells

Dongwon Kim; Olga M. Ocón-Grove; A. L. Johnson

ABSTRACT In the hen ovary, selection of a follicle into the preovulatory hierarchy occurs from a small cohort of prehierarchal (6–8 mm) follicles. Prior to follicle selection the granulosa layer remains in an undifferentiated state despite elevated follicle-stimulating hormone receptor (FSHR) expression. The present studies describe a role for bone morphogenetic protein 4 (BMP4) in supporting FSHR mRNA expression in granulosa cells from prehierarchal follicles and promoting differentiation at follicle selection. Culture of undifferentiated granulosa cells in culture medium alone resulted in a significant decline in levels of FSHR mRNA (by ∼80% compared to freshly collected cells). By comparison, granulosa cultured with BMP4 (10–100 ng/ml) maintained FSHR and expression at approximately in vivo levels. Because both granulosa and theca tissues from prehierarchal follicles express BMP4, it is suggested that BMP4 acts in a paracrine and/or autocrine fashion to support elevated FSHR expression prior to follicle selection. Granulosa cells cultured with BMP4 for 24 h also initiated FSH-induced cAMP production and indirectly initiated anti-Mullerian hormone (AMH), CYP11A, and STAR expression plus progesterone production. However, pretreatment with the BMP antagonist NOGGIN or the mitogen-activated protein kinase (MAPK) agonist transforming growth factor alpha attenuated or blocked each action promoted by BMP4. We conclude that prior to and immediately after selection, BMP4 serves to support FSHR expression within the granulosa layer, yet prior to selection, multiple factors (including inhibitory MAPK signaling, AMH, and BMP antagonists) can modulate FSHR expression and suppress FSH-mediated cell signaling to prevent granulosa cell differentiation prior to follicle selection.


Reproduction | 2010

NAMPT (visfatin) in the chicken testis: influence of sexual maturation on cellular localization, plasma levels and gene and protein expression

Olga M. Ocón-Grove; Susan M. Krzysik-Walker; Sreenivasa R. Maddineni; Gilbert L. Hendricks

Nicotinamide phosphoribosyltransferase (NAMPT) is a cytokine hormone and rate-limiting enzyme involved in production of NAD and therefore affects a variety of cellular functions requiring NAD. Spermatogenesis and testicular steroidogenesis are likely to depend on NAD-dependent reactions and may therefore be affected by changes in testicular NAMPT expression. The objectives of the present study are to investigate testicular NAMPT expression as well as plasma NAMPT levels in prepubertal and adult chickens. By RT-PCR, NAMPT cDNA expression was detected in prepubertal and adult chicken testes. Using immunohistochemistry, NAMPT was predominantly localized in the nucleus of myoid cells, Sertoli cells, and Leydig cells in the prepubertal chicken testis. In adult chickens, however, NAMPT-immunostaining was observed in the cytoplasm of Leydig cells, Sertoli cells, primary spermatocytes, secondary spermatocytes, round spermatids, and elongated spermatids, but not in the spermatogonial cells. Using real-time quantitative PCR, adult chicken testis was found to contain fourfold greater NAMPT mRNA quantity compared with prepubertal chickens. Testicular NAMPT protein quantities determined by western blotting were not significantly different between adult and prepubertal chicken testes. Using immunoblotting, NAMPT was detected in the seminal plasma and sperm protein extracts obtained from chicken semen. Plasma NAMPT levels, determined by enzyme immunoassay, were at least 28-fold higher in the adult chickens compared with prepubertal male chickens. Taken together, sexual maturation is associated with several changes in testicular NAMPT expression indicating that NAMPT is likely to play a significant role in testicular functions such as spermatogenesis and steroidogenesis.


General and Comparative Endocrinology | 2013

Expression of adiponectin and its receptors in avian species.

Sreenivasa Maddineni; Olga M. Ocón-Grove; Gilbert L. Hendricks; R. Vasilatos-Younken; Jill A. Hadley

Adipose tissue is a dynamic endocrine organ secreting a variety of hormones that affect physiological functions within the central nervous system, cardiovascular system, reproductive, and immune systems. The endocrine role of avian adipose tissue remains enigmatic as many of the classical hormones found in mammalian adipose tissue have not been found in avians. This mini-review summarizes our current knowledge on avian adiponectin, one of the most abundant adipose tissue hormones, and its receptors. We cloned the genes encoding chicken adiponectin and its receptors, AdipoR1 and AdipoR2. Using anti-chicken adiponectin antibody, we found that chicken adipose tissue and plasma predominantly contain a unique polymer of adiponectin with a mass greater than 669kDa, unlike mammalian adiponectin which is found as three distinct oligomers. Mass spectrometric analyses of chicken adiponectin revealed certain post-translational modifications that are likely to favor the unique multimerization of adiponectin in chickens. Unlike adiponectin, the nucleotide sequences of chicken AdipoR1- and AdipoR2 cDNA are highly similar to that of mammalian adiponectin receptors. Both adiponectin and adiponectin receptors are widely expressed in several tissues in the chicken. Herein, we review the unique biochemistry of adiponectin as well as expression of adiponectin and its receptors in the chicken. Future studies should focus on elucidating the role of adiponectin, AdipoR1, and AdipoR2 on metabolism, steroidogenesis, and adipose tissue remodeling during growth and reproduction in birds.


Biology of Reproduction | 2007

Identification of Calcitonin Expression in the Chicken Ovary: Influence of Follicular Maturation and Ovarian Steroids

Susan M. Krzysik-Walker; Olga M. Ocón-Grove; Sreenivasa Maddineni; Gilbert L. Hendricks

Abstract Calcitonin (CALCA), a hormone primarily known for its role in calcium homeostasis, has recently been linked to reproduction, specifically as a marker for embryo implantation in the uterus. Although CALCA expression has been documented in several tissues, there has been no report of production of CALCA in the ovary of any vertebrate species. We hypothesized that the Calca gene is expressed in the chicken ovary, and its expression will be altered by follicular maturation or gonadal steroid administration. Using RT-PCR, we detected Calca mRNA and the calcitonin receptor (Calcr) mRNA in the granulosa and theca layers of preovulatory and prehierarchial follicles. Both CALCA and Calca mRNA were localized in granulosa and thecal cells by confocal microscopy. Using quantitative PCR analysis, F1 follicle granulosa layer was found to contain significantly greater Calca mRNA and Calcr mRNA levels compared with those of any other preovulatory or prehierarchial follicle. The granulosa layer contained relatively greater Calca and Calcr mRNA levels compared with the thecal layer in both prehierarchial and preovulatory follicles. Progesterone (P4) treatment of sexually immature chickens resulted in a significantly greater abundance of ovarian Calca mRNA, whereas estradiol (E2) or P4 + E2 treatment significantly reduced ovarian Calca mRNA quantity. Treatment of prehierarchial follicular granulosa cells in vitro with CALCA significantly decreased FSH-stimulated cellular viability. Collectively, our results indicate that follicular maturation and gonadal steroids influence Calca and Calcr gene expression in the chicken ovary. We conclude that ovarian CALCA is possibly involved in regulating follicular maturation in the chicken ovary.


Cell and Tissue Research | 2007

Calcitonin is expressed in the chicken pituitary gland: influence of gonadal steroids and sexual maturation

Sreenivasa R. Maddineni; Susan M. Krzysik-Walker; Olga M. Ocón-Grove; Susan M. Motch; Gilbert L. Hendricks

Calcitonin (CT) is primarily produced by the thyroid C cells in mammals or by the ultimobranchial gland in chickens. CT is also expressed by the pituitary gland in rats in which it functions as a paracrine factor causing decreased lactotroph proliferation and prolactin (PRL) secretion. Gonadal steroids influence CT expression in the rat pituitary gland. However, the expression of the CT gene in the pituitary gland of chickens or of any other avian species has not previously been reported. We have tested the hypotheses that CT is expressed in the chicken pituitary gland, and that its expression is influenced by sexual maturation or in response to ovarian steroid administration. We have detected robust expression of CT cDNA in the chicken pituitary gland by reverse transcription/polymerase chain reaction (PCR). The sequence of the pituitary-derived CT cDNA is identical to that of the ultimobranchial gland. CT-immunoreactive (ir) cells have been observed throughout the anterior pituitary gland by confocal microscopy. Many of the PRL-ir cells show co-localization with CT-ir cells. Quantitative real-time PCR analysis has revealed an inverse relationship between the quantities of PRL mRNA and CT mRNA in the pituitary gland: sexually mature hens contain lower amounts of CT mRNA but larger quantities of PRL mRNA compared with sexually immature chickens. Estradiol and/or progesterone treatment of sexually immature chickens leads to a significant decrease in the quantity of pituitary CT mRNA relative to that in the vehicle-treated chickens. We conclude that pituitary CT plays an important paracrine/autocrine role in the control of lactotroph function and PRL secretion in the chicken.


Endocrinology | 2008

Is Visfatin an Adipokine or Myokine? Evidence for Greater Visfatin Expression in Skeletal Muscle than Visceral Fat in Chickens

Susan M. Krzysik-Walker; Olga M. Ocón-Grove; Sreenivasa R. Maddineni; Gilbert L. Hendricks

Collaboration


Dive into the Olga M. Ocón-Grove's collaboration.

Top Co-Authors

Avatar

Gilbert L. Hendricks

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. L. Johnson

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel H. Poole

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Sreenivasa Maddineni

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Dongwon Kim

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

John A. Proudman

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Jon M. Oatley

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge