Olga Minenkova
Sigma-Tau
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olga Minenkova.
Journal of Biological Chemistry | 1999
Gianluca Cestra; Luisa Castagnoli; Luciana Dente; Olga Minenkova; Annalisa Petrelli; Nicola Migone; Ulrich Hoffmüller; Jens Schneider-Mergener; Gianni Cesareni
The proline-rich domain of synaptojanin 1, a synaptic protein with phosphatidylinositol phosphatase activity, binds to amphiphysin and to a family of recently discovered proteins known as the SH3p4/8/13, the SH3-GL, or the endophilin family. These interactions are mediated by SH3 domains and are believed to play a regulatory role in synaptic vesicle recycling. We have precisely mapped the target peptides on human synaptojanin that are recognized by the SH3 domains of endophilins and amphiphysin and proven that they are distinct. By a combination of different approaches, selection of phage displayed peptide libraries, substitution analyses of peptides synthesized on cellulose membranes, and a peptide scan spanning a 252-residue long synaptojanin fragment, we have concluded that amphiphysin binds to two sites, PIRPSR and PTIPPR, whereas endophilin has a distinct preferred binding site, PKRPPPPR. The comparison of the results obtained by phage display and substitution analysis permitted the identification of proline and arginine at positions 4 and 6 in the PIRPSR and PTIPPR target sequence as the major determinants of the recognition specificity mediated by the SH3 domain of amphiphysin 1. More complex is the structural rationalization of the preferred endophilin ligands where SH3 binding cannot be easily interpreted in the framework of the “classical” type I or type II SH3 binding models. Our results suggest that the binding repertoire of SH3 domains may be more complex than originally predicted.
International Journal of Cancer | 2003
Olga Minenkova; Andrea Pucci; Emiliano Pavoni; Amedeo De Tomassi; Paola Fortugno; Nicola Gargano; Maurizio Cianfriglia; Stefano Barca; Sabino De Placido; Angelo Martignetti; Franco Felici; Riccardo Cortese; Paolo Monaci
Screening cDNA libraries from solid human tumors with sera of autologous patients (SEREX) has proven to be a powerful approach to identifying tumor antigens recognized by the humoral arm of the immune system. In many cases, application of this methodology has led to the discovery of novel tumor antigens as unknown gene products. We tried to improve the potency of the SEREX approach by combining it with phage‐display technology. We designed a new lambda vector to express protein fragments as N‐terminal fusions to the D capsid protein and generated high‐complexity cDNA libraries from human breast carcinoma cell lines and solid tumors. Screening these phage‐displayed libraries required limited amounts of sera from patients and efficiently identified several tumor antigens specifically reacting with sera from breast cancer patients.
Journal of Clinical Microbiology | 2003
Elisa Beghetto; Wilma Buffolano; Andrea Spadoni; Mariassunta Del Pezzo; Manlio Di Cristina; Olga Minenkova; Eskild Petersen; Franco Felici; Nicola Gargano
ABSTRACT The objective of this work was to develop an antibody-specific immunoglobulin G (IgG) avidity assay to discriminate between acute and latent phases of Toxoplasma gondii infection by using recombinant antigens. One hundred twenty-one serum samples from women who developed IgG antibodies against Toxoplasma during pregnancy were used. The IgG avidities of antibodies directed against epitopes carried by fragments of GRA3, GRA7, MIC3, and SAG1 antigens were measured by performing parallel enzyme immunoassays. The avidity index for Toxoplasma-specific antibodies against a homogeneous mixture of recombinant GRA3, GRA7, MIC3, and SAG1 antigens correlated closely with the IgG avidity of antibodies against lysed whole-cell T. gondii antigen. The avidity assay performed with the recombinant MIC3 antigen highlighted the presence of avidity low-antibodies IgG exclusively in sera collected within 2 months after primary infection. The presence of T. gondii-specific, low-avidity IgG antibodies against recombinant MIC3 antigen can be used to determine the point of infection with T. gondii within a 2-month time frame after infection.
International Journal for Parasitology | 2003
Elisa Beghetto; Andrea Spadoni; Wilma Buffolano; Mariassunta Del Pezzo; Olga Minenkova; Emiliano Pavoni; Andrea Pucci; Riccardo Cortese; Franco Felici; Nicola Gargano
The disorders generated by Toxoplasma gondii infection are closely associated with the competence of the host immune system and both humoral and cell mediated immunity are involved in response to parasite invasion. To identify antigens implicated in human B-cell responses, we screened a phage-display library of T. gondii cDNA fragments with sera of infected individuals. This approach identified a panel of recombinant phage clones carrying B-cell epitopes. All the peptide sequences selected by this procedure are regions of T. gondii gene products. These regions contain epitopes of the T. gondii antigens SAG1, GRA1, GRA7, GRA8 and MIC5, which are recognised by human immunoglobulins. Moreover, we report the isolation and characterisation of two additional immunodominant regions encoded by GRA3 and MIC3 genes, whose products have never been described as antigens of the human B-cell response against T. gondii infection. These results demonstrate potential of lambda-display technology for antigen discovery and for the study of the human antibody response against infectious agents.
International Journal for Parasitology | 2001
Elisa Beghetto; Andrea Pucci; Olga Minenkova; Andrea Spadoni; Luca Bruno; Wilma Buffolano; Dominique Soldati; Franco Felici; Nicola Gargano
Excreted secreted antigens of the protozoan parasite Toxoplasma gondii play a key role in stimulating the host immune system during acute and chronic infection. With the aim of identifying the immunodominant epitopes of T. gondii antigens involved in the human B-cell response against the parasite, we employed a novel immunological approach. A library of cDNA fragments from T. gondii tachyzoites was displayed as fusion proteins to the amino-terminus of lambda bacteriophage capsid protein D. The lambda D-tachyzoite library was then affinity-selected by using a panel of sera of pregnant women, all infected with the parasite. Some of the clones identified through this procedure matched the sequence of the dense granule GRA1 protein (p24), allowing us to identify its antigenic regions. In particular, the analysis of human antibody response against the recombinant GRA1 antigen fragments revealed the existence of an immunodominant epitope (epi-24 peptide).
Biological Chemistry | 1997
Gioacchin Iannolo; Olga Minenkova; Stefania Gonfloni; Luisa Castagnoli; Gianni Cesareni
The amino-terminus of the major coat protein (PVIII) of filamentous phage can be extended, up to 6-7 residues, without interfering with the phage life cycle. We have constructed a library of approximately ten millions different phage each displaying a different octapeptide joined to the amino-terminus of the 2700 copies of PVIII. Most of the resulting clones are able to produce infective particles. This molecular repertoire constituted by the periodic regular decoration of the phage filament surface, can be utilized to search elements that bind proteins or relatively small organic molecules like the textile dye Cibacron blue. By sequential growth cycles we have performed a library evolution experiment to select phage clones that have a growth advantage in the absence of any requirement for binding a specific target. The consensus of the best growers reveals a Pro rich sequence with large hydrophobic residues at position 7 and Asn at position 1 of the random peptide insert. We propose that the assembly secretion process is favoured in phages displaying this family of peptides since they fit the groove between two adjacent PVIII subunits by making advantageous molecular contacts on the phage surface.
BMC Cancer | 2006
Emiliano Pavoni; Michela Flego; Maria Luisa Dupuis; Stefano Barca; Fiorella Petronzelli; Anna Maria Anastasi; Valeria D'Alessio; Angela Pelliccia; Paola Vaccaro; Giorgia Monteriù; Alessandro Ascione; Rita De Santis; Franco Felici; Maurizio Cianfriglia; Olga Minenkova
BackgroundCEA is a tumor-associated antigen abundantly expressed on several cancer types, including those naturally refractory to chemotherapy. The selection and characterization of human anti-CEA single-chain antibody fragments (scFv) is a first step toward the construction of new anticancer monoclonal antibodies designed for optimal blood clearance and tumor penetration.MethodsThe human MA39 scFv, selected for its ability to recognize a CEA epitope expressed on human colon carcinomas, was first isolated from a large semi-synthetic ETH-2 antibody phage library, panned on human purified CEA protein. Subsequently, by in vitro mutagenesis of a gene encoding for the scFv MA39, a new library was established, and new scFv antibodies with improved affinity towards the CEA cognate epitope were selected and characterized.ResultsThe scFv MA39 antibody was affinity-maturated by in vitro mutagenesis and the new scFv clone, E8, was isolated, typed for CEA family member recognition and its CEACAM1, 3 and 5 shared epitope characterized for expression in a large panel of human normal and tumor tissues and cells.ConclusionThe binding affinity of the scFv E8 is in a range for efficient, in vivo, antigen capture in tumor cells expressing a shared epitope of the CEACAM1, 3 and 5 proteins. This new immunoreagent meets all criteria for a potential anticancer compound: it is human, hence poorly or not at all immunogenic, and it binds selectively and with good affinity to the CEA epitope expressed by metastatic melanoma and colon and lung carcinomas. Furthermore, its small molecular size should provide for efficient tissue penetration, yet give rapid plasma clearance.
Biotechnology Annual Review | 2005
Gabriella Garufi; Olga Minenkova; Carla Lo Passo; Ida Pernice; Franco Felici
Phage display is an established technology that has been successfully applied, in the last fifteen years, to projects aimed at deciphering biological processes and/or at the isolation of molecules of practical value in several diverse applications. Bacteriophage lambda, representing a molecular cloning and expression tool widely utilized since decades, has also been exploited to develop vectors for the display of libraries on its capsid. In the last few years, lambda display approach has been consistently offering new enthralling perspectives of technological application, such as domain mapping, antigen discovery, and protein interaction studies or, more generally, in functional genomics.
BMC Biotechnology | 2007
Emiliano Pavoni; Giorgia Monteriù; Daniela Santapaola; Fiorella Petronzelli; Anna Maria Anastasi; Angela Pelliccia; Valeria D'Alessio; Rita De Santis; Olga Minenkova
BackgroundThere is much evidence that tumor cells elicit a humoral immune response in patients. In most cases, the presence of antibodies in peripheral blood is detected only in small proportion of patients with tumors overexpressing the corresponding antigen. In the present study, we analyzed the significance of local humoral response provided by tumor-infiltrating lymphocytes in breast cancer patients.MethodsThe ability of a patients immune system to produce specific antibodies inside tumor tissue, capable of recognizing tumor cells, was explored through analysis of the oligoclonality of antibodies derived from tumor-infiltrating lymphocytes and construction of a series of recombinant antibody libraries in scFv format, derived from breast tumor-infiltrating B lymphocytes. These libraries and one from peripheral blood lymphocytes of a single breast cancer patient were panned against three purified surface tumor antigens, such as CEA, MUC1 and ED-B domain, and against intact MCF7 breast carcinoma cells.ResultsApplication of novel display vector, pKM19, allowed isolation of a large panel of breast cancer-specific antibodies against known tumor antigens, as well as against breast carcinoma cells. Reactivity of novel scFvs was confirmed by ELISA, immunohistochemistry, fluorescence staining and flow cytometry. We demonstrated that seven of ten primary breast tumor specimens, obtained using discarded surgical material, could be exploited as an appropriate source for generation of phage display libraries, giving highly specific antitumor antibodies which recognize heterologous tumor cells.ConclusionLocal humoral immune response within tumor tissue in breast cancer patients frequently has an oligoclonal character. Efficient selection of specific antitumor antibodies from recombinant antibody libraries, derived from such oligoclonal tumor-infiltrated B lymphocytes, indicates the presence of natural immune response against tumor antigens in these patients. The described method is very promising for development of antitumor antibodies, potentially useful for diagnostic and therapeutic approaches.
BMC Cancer | 2004
Emiliano Pavoni; Paola Vaccaro; Andrea Pucci; Giorgia Monteriù; Elisa Beghetto; Stefano Barca; Maria Luisa Dupuis; Adolfo De Pasquale Ceratti; Antonio Lugini; Maurizio Cianfriglia; Enrico Cortesi; Franco Felici; Olga Minenkova
BackgroundTumor-associated antigens recognized by humoral effectors of the immune system are a very attractive target for human cancer diagnostics and therapy. Recent advances in molecular techniques have led to molecular definition of immunogenic tumor proteins based on their reactivity with autologous patient sera (SEREX).MethodsSeveral high complexity phage-displayed cDNA libraries from breast carcinomas, human testis and breast carcinoma cell lines MCF-7, MDA-MB-468 were constructed. The cDNAs were expressed in the libraries as fusion to bacteriophage lambda protein D. Lambda-displayed libraries were efficiently screened with sera from patients with breast cancer.ResultsA panel of 21 clones representing 18 different antigens, including eight proteins of unknown function, was identified. Three of these antigens (T7-1, T11-3 and T11-9) were found to be overexpressed in tumors as compared to normal breast. A serological analysis of the 21 different antigens revealed a strong cancer-related profile for at least five clones (T6-2, T6-7, T7-1, T9-21 and T9-27).ConclusionsPreliminary results indicate that patient serum reactivity against five of the antigens is associated with tumor disease. The novel T7-1 antigen, which is overexpressed in breast tumors and recognized specifically by breast cancer patient sera, is potentially useful in cancer diagnosis.