Olga N. Rozova
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olga N. Rozova.
Nature Communications | 2013
Marina G. Kalyuzhnaya; Song Yang; Olga N. Rozova; Nicole E. Smalley; J. Clubb; Andrew E. Lamb; G. A. Nagana Gowda; Daniel Raftery; Y. Fu; Françoise Bringel; Stéphane Vuilleumier; David A. C. Beck; Yuri A. Trotsenko; V. N. Khmelenina; Mary E. Lidstrom
Methane is an essential component of the global carbon cycle and one of the most powerful greenhouse gases, yet it is also a promising alternative source of carbon for the biological production of value-added chemicals. Aerobic methane-consuming bacteria (methanotrophs) represent a potential biological platform for methane-based biocatalysis. Here we use a multi-pronged systems-level approach to reassess the metabolic functions for methane utilization in a promising bacterial biocatalyst. We demonstrate that methane assimilation is coupled with a highly efficient pyrophosphate-mediated glycolytic pathway, which under oxygen limitation participates in a novel form of fermentation-based methanotrophy. This surprising discovery suggests a novel mode of methane utilization in oxygen-limited environments, and opens new opportunities for a modular approach towards producing a variety of excreted chemical products using methane as a feedstock.
Fems Microbiology Letters | 2008
Alexander S. Reshetnikov; Olga N. Rozova; V. N. Khmelenina; Ildar I. Mustakhimov; Alexander P. Beschastny; J. Colin Murrell; Yuri A. Trotsenko
An active pyrophosphate-dependent 6-phosphofructokinase (PPi-PFK) from the thermotolerant methanotroph Methylococcus capsulatus Bath, containing a six-residue polyhistidine tag, was characterized. The enzyme was homodimeric (2 x 45 kDa), nonallosteric and most active at pH 7.0. PPi-PFK catalyzed reactions of PPi-dependent phosphorylation of fructose-6-phosphate (F-6-P) (K(m) 2.27 mM and V(max) 7.6 U mg(-1) of protein), sedoheptulose-7-phosphate (K(m) 0.027 mM and V(max) 31 U mg(-1)) and ribulose-5-phosphate. In the reaction with F-6-P, the apparent K(m) for PPi was 0.027 mM, while in the reverse reaction, K(m) for orthophosphate was 8.69 mM and that for fructose-1,6-bisphosphate 0.328 mM (V(max) 9.0 U mg(-1)). Phylogenetically, M. capsulatus PPi-PFK was most similar to PPi-PFKs from the lithoautotrophic ammonia oxidizers Nitrosomonas europaea (74.0%), Nitrosospira multiformis (73.6%) and Betaproteobacterial methylotroph Methylibium petroleiphilum PM1 (71.6% identity). Genes coding PPi-PFK and a putative V-type H(+)-translocating pyrophosphatase (H(+)-PPi-ase) were cotranscribed as an operon. The potential significance of the PPi-PFK for regulation of carbon and energy fluxes in M. capsulatus Bath is discussed.
International Journal of Systematic and Evolutionary Microbiology | 2013
Olga V. Danilova; Irina S. Kulichevskaya; Olga N. Rozova; Ekaterina N. Detkova; Paul L. E. Bodelier; Yuri A. Trotsenko; Svetlana N. Dedysh
An aerobic methanotrophic bacterium was isolated from an acidic (pH 3.9) Sphagnum peat bog in north-eastern Russia and designated strain MG30(T). Cells of this strain were Gram-negative, pale pink-pigmented, non-motile, thick rods that were covered by large polysaccharide capsules and contained an intracytoplasmic membrane system typical of type I methanotrophs. They possessed a particulate methane monooxygenase enzyme (pMMO) and utilized only methane and methanol. Carbon was assimilated via the ribulose-monophosphate pathway; nitrogen was fixed via an oxygen-sensitive nitrogenase. Strain MG30(T) was able to grow at a pH range of 3.8-7.3 (optimum pH 5.8-6.4) and at temperatures between 8 and 30 °C (optimum 20-25 °C). The major cellular fatty acids were C16:1ω5t, C16:1ω8c, C16:1ω7c and C14:0; the DNA G+C content was 48.5 mol%. The isolate belongs to the family Methylococcaceae of the class Gammaproteobacteria and displayed 94.7-96.9% 16S rRNA gene sequence similarity to members of the genus Methylomonas. However, strain MG30(T) differed from all taxonomically characterized members of this genus by the absence of motility, the ability to grow in acidic conditions and low DNA G+C content. Therefore, we propose to classify this strain as representing a novel, acid-tolerant species of the genus Methylomonas, Methylomonas paludis sp. nov. Strain MG30(T) (=DSM 24973(T)=VKM B-2745(T)) is the type strain.
Genome Announcements | 2015
Richard Hamilton; K. Dimitri Kits; Victoria A. Ramonovskaya; Olga N. Rozova; Hiroya Yurimoto; Hiroyuki Iguchi; V. N. Khmelenina; Yasuyoshi Sakai; Peter F. Dunfield; Martin G. Klotz; Claudia Knief; Huub J. M. Op den Camp; Mike S. M. Jetten; Françoise Bringel; Stéphane Vuilleumier; Mette M. Svenning; Nicole Shapiro; Tanja Woyke; Yuri A. Trotsenko; Lisa Y. Stein; Marina G. Kalyuzhnaya
ABSTRACT Genome sequences of Methylobacter luteus, Methylobacter whittenburyi, Methylosarcina fibrata, Methylomicrobium agile, and Methylovulum miyakonense were generated. The strains represent aerobic methanotrophs typically isolated from various terrestrial ecosystems.
Biochemistry | 2012
S. Y. But; Olga N. Rozova; V. N. Khmelenina; Alexander S. Reshetnikov; Yuri A. Trotsenko
In the cluster of genes for sucrose biosynthesis and cleavage in Methylomicrobium alcaliphilum 20Z, a gene whose encoded sequence showed high similarity to sugar kinases of the ribokinase family was found. By heterologous expression of this gene in Escherichia coli cells and following metal chelate affinity chromatography, the electrophoretically homogenous recombinant enzyme with six histidine residues on the C-end was obtained. The enzyme catalyzes ATP-dependent phosphorylation of fructose into fructose-6-phosphate but is not active with other sugars as phosphoryl acceptors. The fructokinase of M. alcaliphilum 20Z is most active in the presence of Mn2+ at pH 9.0 and 60°C, being inhibited by ADP (Ki = 2.50 ± 0.03 mM). The apparent Km values for fructose and ATP are 0.26 and 1.3 mM, respectively; the maximal activity is 141 U/mg protein. The enzyme shows the highest similarity of translated amino acid sequence with putative fructokinases of methylotrophic and autotrophic proteobacteria whose fruK gene is located in the gene cluster of sucrose biosynthesis. The involvement of fructokinase in sucrose metabolism in M. alcaliphilum 20Z and other methanotrophs and autotrophs is discussed.
Research in Microbiology | 2010
Olga N. Rozova; V. N. Khmelenina; Stéphane Vuilleumier; Yuri A. Trotsenko
Pyrophosphate-dependent 6-phosphofructokinase (PPi-PFK) was obtained as His₆-tagged protein by cloning of the pfp gene from the aerobic obligate methanotroph Methylomicrobium alcaliphilum 20Z and characterized. The recombinant PPi-PFK (4×45 kDa) was highly active, non-allosteric and stringently specific to pyrophosphate as the phosphoryl donor. The enzyme was more specific for the reverse reaction substrate fructose-1,6-bisphosphate (K(m) 0.095 mM, V(max) 805 U/mg of protein) than for the forward reaction substrate fructose-6-phosphate (K(m) 0.64 mM, V(max) 577 U/mg of protein). It also phosphorylated sedoheptulose-7-phosphate with much lower efficiency (K(m) 1.01 mM, V(max) 0.118 U/mg of protein). The kinetic properties of the M. alcaliphilum PP(i)-PFK were analyzed and compared with those of PP(i)-PFKs from other methanotrophs. The PP(i)-PFK from M. alcaliphilum shows highest sequence identity to PPi-PFK from obligate mesophilic methanotroph Methylomonas methanica (89%), and only low identity to the enzyme from thermotolerant Methylococcus capsulatus Bath (16%). This extensive sequence divergence of PPi-PFKs correlated with differential ability to phosphorylate sedoheptulose-7-phosphate and with the metabolic patterns of these bacteria assimilating C₁ substrate either via the ribulose monophoshate (RuMP) cycle or simultaneously via the RuMP and the Calvin cycles. Based on enzymic and genomic data, the involvement of PPi-PFK in pyrophosphate-dependent glycolysis in M. alcaliphilum 20Z was fist proposed.
Fems Microbiology Letters | 2008
Ildar I. Mustakhimov; Olga N. Rozova; Alexander S. Reshetnikov; V. N. Khmelenina; J. Colin Murrell; Yuri A. Trotsenko
Diaminobutyric acid acetyltransferase (EctA) catalyzes the acetylation of diaminobutyric acid to gamma-N-acetyl-alpha,gamma-diaminobutyrate with acetyl coenzyme A. This is the second reaction in the ectoine biosynthetic pathway. The recombinant EctA proteins were purified from two moderately halophilic methylotrophic bacteria: Methylophaga thalassica ATCC 33146T and Methylophaga alcalica ATCC 35842T. EctA found in both methylotrophs is a homodimer with a subunit molecular mass of c. 20 kDa and had similar properties with respect to the optimum temperature for activity (30 degrees C), Km for diaminobutyrate (370 or 375 microM) and the absence of requirements for divalent metal ions. The enzyme from M. thalassica exhibited a lower pH optimum and was inhibited both by sodium carbonates and by high ionic strength but to a lesser extent by copper ions.
Methods in Enzymology | 2011
V. N. Khmelenina; Olga N. Rozova; Yuri A. Trotsenko
The Embden-Meyerhof-Parnas (EMP) glycolysis is the starting point of the core carbon metabolism. Aerobic methanotrophs possessing activity of the pyrophosphate-dependent 6-phosphofructokinase (PPi-PFK) instead of the classical glycolytic enzyme ATP-dependent 6-phosphofructokinase (ATP-PFK) are promising model bacteria for elucidation of the role of inorganic pyrophosphate (PPi) and PPi-dependent glycolysis in microorganisms. Characterization of the His(6)-tagged PPi-PFKs from two methanotrophs, halotolerant alkaliphilic Methylomicrobium alcaliphilum 20Z and thermotolerant Methylococcus capsulatus Bath, showed differential capabilities of PPi-PFKs to phosphorylate sedoheptulose-7-phosphate and this property correlated well with the metabolic patterns of these bacteria assimilating C(1) substrate either via the ribulosemonophosphate (RuMP) pathway (Mm. alcaliphilum 20Z) or simultaneously via the RuMP and serine pathways and the Calvin cycle (Mc. capsulatus Bath). Analysis of the genomic draft of Mm. alcaliphilum 20Z (https://www.genoscope.cns.fr/agc/mage) has provided in silico evidence for the existence of a PPi-dependent pyruvate-phosphate dikinase (PPDK). Expression of the ppdk gene at oxygen limitation along with the presence of PPi-PFK in Mm. alcaliphilum 20Z implied functioning of PPi-dependent glycolysis and PPi recycling under conditions when oxidative phosphorylation is hampered.
Microorganisms | 2015
Olga N. Rozova; V. N. Khmelenina; Ksenia A. Bocharova; Ildar I. Mustakhimov; Yuri A. Trotsenko
We have expressed the l-malate dehydrogenase (MDH) genes from aerobic methanotrophs Methylomicrobium alcaliphilum 20Z and Methylosinus trichosporium OB3b as his-tagged proteins in Escherichia coli. The substrate specificities, enzymatic kinetics and oligomeric states of the MDHs have been characterized. Both MDHs were NAD+-specific and thermostable enzymes not affected by metal ions or various organic metabolites. The MDH from M. alcaliphilum 20Z was a homodimeric (2 × 35 kDa) enzyme displaying nearly equal reductive (malate formation) and oxidative (oxaloacetate formation) activities and higher affinity to malate (Km = 0.11 mM) than to oxaloacetate (Km = 0.34 mM). The MDH from M. trichosporium OB3b was homotetrameric (4 × 35 kDa), two-fold more active in the reaction of oxaloacetate reduction compared to malate oxidation and exhibiting higher affinity to oxaloacetate (Km = 0.059 mM) than to malate (Km = 1.28 mM). The kcat/Km ratios indicated that the enzyme from M. alcaliphilum 20Z had a remarkably high catalytic efficiency for malate oxidation, while the MDH of M. trichosporium OB3b was preferable for oxaloacetate reduction. The metabolic roles of the enzymes in the specific metabolism of the two methanotrophs are discussed.
Biochemistry | 2017
Olga N. Rozova; S. Y. But; V. N. Khmelenina; Alexander S. Reshetnikov; Ildar I. Mustakhimov; Yuri A. Trotsenko
Two key enzymes of the ribulose monophosphate (RuMP) cycle for formaldehyde fixation, 3-hexulose-6-phosphate synthase (HPS) and 6-phospho-3-hexulose isomerase (PHI), in the aerobic halotolerant methanotroph Methylomicrobium alcaliphilum 20Z are encoded by the genes hps and phi and the fused gene hps-phi. The recombinant enzymes HPS-His6, PHI-His6, and the two-domain proteinHPS–PHI were obtained by heterologous expression in Escherichia coli and purified by affinity chromatography. PHI-His6, HPS-His6 (2 × 20 kDa), and the fused protein HPS–PHI (2 × 40 kDa) catalyzed formation of fructose 6-phosphate from formaldehyde and ribulose 5-phosphate with activities of 172 and 22 U/mg, respectively. As judged from the kcat/Km ratio, HPS-His6 had higher catalytic efficiency but lower affinity to formaldehyde compared to HPS–PHI. AMP and ADP were powerful inhibitors of both HPS and HPS–PHI activities. The two-domain HPS–PHI did not show isomerase activity, but the sequences corresponding to its HPS and PHI regions, when expressed separately, were found to produce active enzymes. Inactivation of the hps-phi fused gene did not affect the growth rate of the mutant strain. Analysis of annotated genomes revealed the separately located genes hps and phi in all the RuMP pathway methylotrophs, whereas the hps-phi fused gene occurred only in several methanotrophs and was absent in methylotrophs not growing under methane. The significance of these tandems in adaptation and biotechnological potential of methylotrophs is discussed.