Olga Patutina
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olga Patutina.
Biochimie | 2011
Olga Patutina; Nadezda Mironova; Elena I. Ryabchikova; N. A. Popova; V. P. Nikolin; Vasily I. Kaledin; Valentin V. Vlassov; Marina A. Zenkova
Recent data on the involvement of miRNA and circulating tumor-derived DNA in regulation of tumorigenesis showed a great prospect for these molecules as a novel class of therapeutic targets and gave a new start for the study of enzymes cleaving nucleic acids as potential antitumor and antimetastatic agents. In the present paper using two murine tumor models with pulmonary or liver metastases we studied the antimetastatic potential of RNase A and DNase I and performed a search for possible molecular targets of the enzymes. Herein, we show for the first time that daily administration of ultralow doses of RNase A (0.5-50 μg/kg) and DNase I (0.02-2.3 mg/kg) inhibits the development of metastasis to 60-90% and RNase A exerts 30% retardation of tumor growth. Remarkably, the increase in RNase A dose from 50 μg/kg to 10mg/kg leads to a disappearance of antitumor and antimetastatic effects. Simultaneous treatment of tumor-bearing animals with RNase A and DNase I leads to an additive effect and results in almost total absence of metastases. The use of RNase A as an adjuvant in conjunction with conventional cytostatic cyclophosphamide results in a reliable enhancement of antitumor and antimetastatic effect of the therapy compared with the use of these agents individually. The search for possible molecular mechanism of antimetastatic effect of nucleases showed that daily administration of the enzymes reduced the pathologically increased level of extracellular nucleic acids and increased nuclease activity of the blood plasma of tumor-bearing mice back to the level of healthy animals. Thus, we unequivocally show that the proposed protocol of treatment of tumor-bearing animals with RNase A and DNase I has a general systemic and immunomodulatory effect, leads to a drastic suppression of metastasis development, and in perspective may become an effective component of intensive complex therapy of cancer.
BMC Cancer | 2010
Olga Patutina; Nadezda Mironova; N. A. Popova; Vasily I. Kaledin; V. P. Nikolin; Valentin V. Vlassov; Marina A. Zenkova
BackgroundOne of the main obstacles for successful cancer polychemotherapy is multiple drug resistance phenotype (MDR) acquired by tumor cells. Currently, RNA interference represents a perspective strategy to overcome MDR via silencing the genes involved in development of this deleterious phenotype (genes of ABC transporters, antiapoptotic genes, etc.).MethodsIn this study, we used the siRNAs targeted to mdr1b, mdr1a, and bcl-2 mRNAs to reverse the MDR of tumors and increase tumor sensitivity to chemotherapeutics. The therapy consisting in ex vivo or in vivo application of mdr1b/1a siRNA followed by cyclophosphamide administration was studied in the mice bearing RLS40 lymphosarcoma, displaying high resistance to a wide range of cytostatics.ResultsOur data show that a single application of mdr1b/1a siRNA followed by treatment with conventionally used cytostatics results in more than threefold decrease in tumor size as compared with the control animals receiving only cytostatics.ConclusionsIn perspective, mdr1b/1a siRNA may become a well-reasoned adjuvant tool in the therapy of MDR malignancies.
Cell Cycle | 2013
Nadezhda L. Mironova; Irina Yu. Petrushanko; Olga Patutina; Aexandra V. Sen’kova; Olga V. Simonenko; Vladimir A. Mitkevich; Oleg V. Markov; Marina A. Zenkova; Alexander A. Makarov
Exogenous ribonucleases are known to inhibit tumor growth via apoptosis induction in tumor cells, allowing to consider them as promising anticancer drugs for clinical application. In this work the antitumor potential of binase was evaluated in vivo and the mechanism of cytotoxic effect of binase on tumor cells was comprehensively studied in vitro. We investigated tumoricidal activity of binase using three murine tumor models of Lewis lung carcinoma (LLC), lymphosarcoma RLS40 and melanoma B-16. We show for the first time that intraperitoneal injection of binase at a dose range 0.1–5 mg/kg results in retardation of primary tumor growth up to 45% in LLC and RLS40 and inhibits metastasis up to 50% in LLC and RLS40 and up to 70% in B-16 melanoma. Binase does not exhibit overall toxic effect and displays a general systemic and immunomodulatory effects. Treatment of RLS40-bearing animals with binase together with polychemotherapy revealed that binase decreases the hepatotoxicity of polychemotherapy while maintaining its antitumor effect. It was demonstrated that the cytotoxic effect of binase is realized via the induction of the intrinsic and extrinsic apoptotic pathways. Activation of intrinsic apoptotic pathway is manifested by a drop of mitochondrial potential, increase in calcium concentration and inhibition of respiratory activity. Subsequent synthesis of TNF-α in the cells under the action of binase triggers extrinsic apoptotic pathway through the binding of TNF with cell-death receptors and activation of caspase 8. Thus binase is a potential anticancer therapeutics inducing apoptosis in cancer cells.
Biochimie | 2014
A.V. Sen'kova; N.L. Mironova; Olga Patutina; Vladimir A. Mitkevich; O.V. Markov; Irina Yu. Petrushanko; Ksenia M. Burnysheva; Marina A. Zenkova; Alexander A. Makarov
The successful application of exogenous ribonucleases of different origin to suppress tumor growth allows one to consider them as perspective therapeutics for treatment of oncological diseases. An important aspect of the success of an anti-cancer drug is low hepatotoxicity, which will reduce, if not eliminate entirely the undesirable side effects of treatment. Previously we have shown that ribonuclease from Bacillus intermedius (binase) exhibits high antitumor and antimetastatic activity in tumor models of different histological origin. In this work we studied hepatotoxic action of binase using mouse tumor model of Lewis lung carcinoma. Binase at doses of 0.1-1 mg/kg which produced effective suppression of tumor growth and metastasis, showed positive effect on the liver of tumor-bearing mice expressed in a significant reduction in the volume of destructive changes in the liver parenchyma and return to the normal level of the liver regenerative potential impaired due to endogenous intoxication and tumor burden.
PLOS ONE | 2013
N. L. Mironova; Olga Patutina; Evgenyi Brenner; Alexander M. Kurilshikov; Valentin V. Vlassov; Marina A. Zenkova
Novel data showing an important role of microRNAs in mediating tumour progression opened a new field of possible molecular targets for cytotoxic ribonucleases. Recently, antitumour and antimetastatic activities of pancreatic ribonuclease A were demonstrated and here genome-wide profiles of microRNAs in the tumour and blood of mice bearing Lewis lung carcinoma after treatment with RNase A were analysed by high-throughput Sequencing by Oligonucleotide Ligation and Detection (SOLiD™) sequencing technology. Sequencing data showed that RNase A therapy resulted in the boost of 116 microRNAs in tumour tissue and a significant drop of 137 microRNAs in the bloodstream that were confirmed by qPCR. The microRNA boost in the tumour was accompanied by the overexpression of microRNA processing genes: RNASEN (Drosha), xpo5, dicer1, and eif2c2 (Ago2). Ribonuclease activity of RNase A was shown to be crucial for the activation of both microRNA synthesis and expression of the microRNA processing genes. In the tumour tissue, RNase A caused the upregulation of both oncomirs and tumour-suppressor microRNAs, including microRNAs of the let-7 family, known to negatively regulate tumour progression. Our results suggest that the alteration of microRNA signature caused by RNase A treatment leads to the attenuation of tumour malignancy.
International Scholarly Research Notices | 2012
Alexandra V. Sen'kova; Nadezhda L. Mironova; Olga Patutina; Tatyana A. Ageeva; Marina A. Zenkova
Antitumor therapy of hematological malignancies is impeded due to the high toxicity of polychemotherapy toward liver and increasing multiple drug resistance (MDR) of tumor cells under the pressure of polychemotherapy. These two problems can augment each other and significantly reduce the efficiency of antineoplastic therapy. We studied the combined effect of polychemotherapy and upregulated MDR of lymphosarcoma RLS40 onto the liver of experimental mice using two treatment schemes. Scheme 1 is artificial: the tumor was subjected to four courses of polychemotherapy while the liver of the tumor-bearing mice was exposed to only one. This was achieved by threefold tumor retransplantation taken from animals subjected to chemotherapy into intact animals. Scheme 2 displays “real-life” status of patients with MDR malignancies: both the tumor and the liver of tumor-bearing mice were subjected to three sequential courses of polychemotherapy. Our data show that the strengthening of MDR phenotype of RLS40 under polychemotherapy and toxic pressure of polychemotherapy itself has a synergistic damaging effect on the liver that is expressed in the accumulation of destructive changes in the liver tissue, the reduction of the regeneration capacity of the liver, and increasing of Pgp expression on the surface of hepatocytes.
PLOS ONE | 2017
Ludmila Alekseeva; Nadezhda L. Mironova; Evgenyi Brenner; Alexander M. Kurilshikov; Olga Patutina; Marina A. Zenkova
Taking into account recently obtained data indicating the participation of circulating extracellular DNA (exDNA) in tumorigenesis, enzymes with deoxyribonucleic activity have again been considered as potential antitumour and antimetastatic drugs. Previously, using murine Lewis lung carcinoma and hepatocellular carcinoma A1 tumour models, we have shown the antimetastatic activity of bovine DNase I, which correlates with an increase of DNase activity and a decrease of exDNA concentration in the blood serum of tumour-bearing mice. In this work, using next-generation sequencing on the ABS SOLiD™ 5.500 platform, we performed a search for molecular targets of DNase I by comparing the exDNA profiles of healthy animals, untreated animals with Lewis lung carcinoma (LLC) and those with LLC treated with DNase I. We found that upon DNase I treatment of LLC-bearing mice, together with inhibition of metastasis, a number of strong alterations in the patterns of exDNA were observed. The major differences in exDNA profiles between groups were: i) the level of GC-poor sequences increased during tumour development was reduced to that of healthy mice; ii) levels of sequences corresponding to tumour-associated genes Hmga2, Myc and Jun were reduced in the DNase I-treated group in comparison with non-treated mice; iii) 224 types of tandem repeat over-presented in untreated LLC-bearing mice were significantly reduced after DNase I treatment. The most important result obtained in the work is that DNase I decreased the level of B-subfamily repeats having homology to human ALU repeats, known as markers of carcinogenesis, to the level of healthy animals. Thus, the obtained data lead us to suppose that circulating exDNA plays a role in tumour dissemination, and alteration of multiple molecular targets in the bloodstream by DNase I reduces the invasive potential of tumours.
Oncotarget | 2017
Nadezhda L. Mironova; Olga Patutina; Evgenyi Brenner; Alexander M. Kurilshikov; Valentin V. Vlassov; Marina A. Zenkova
Recently, pancreatic RNase A was shown to inhibit tumor and metastasis growth that accompanied by global alteration of miRNA profiles in the blood and tumor tissue (Mironova et al., 2013). Here, we performed a whole transcriptome analysis of murine Lewis lung carcinoma (LLC) after treatment of tumor-bearing mice with RNase A. We identified 966 differentially expressed transcripts in LLC tumors, of which 322 were upregulated and 644 were downregulated after RNase A treatment. Many of these genes are involved in signaling pathways that regulate energy metabolism, cell-growth promoting and transforming activity, modulation of the cancer microenvironment and extracellular matrix components, and cellular proliferation and differentiation. Following RNase A treatment, we detected an upregulation of carbohydrate metabolism, inositol phosphate cascade and oxidative phosphorylation, re-arrangement of cell adhesion, cell cycle control, apoptosis, and transcription. Whereas cancer-related signaling pathways (e.g., TGF-beta, JAK/STAT, and Wnt) were downregulated following RNase A treatment, as in the case of the PI3K/AKT pathway, which is involved in the progression of non-small lung cancer. RNase A therapy resulted in the downregulation of genes that inhibit the biogenesis of some miRNAs, particularly the let-7 miRNA family. Taken together, our data suggest that the antitumor activity and decreased invasion potential of tumor cells caused by RNase A are associated with enhanced energy cascade functioning, rearrangement of cancer-related events regulating cell growth and dissemination, and attenuation of signaling pathways having tumor-promoting activity. Thus, RNase A can be proposed as a potential component of anticancer therapy with multiple modes of action.
Molecular Biology | 2017
L. A. Alexeeva; Olga Patutina; A. V. Sen’kova; Marina A. Zenkova; N. L. Mironova
After a long pause, the accumulation of data on the involvement of tumor-specific DNA and extracellular DNA in metastasis has again placed enzymes with deoxyribonuclease activity in the focus of the search for antitumor and antimetastatic drugs. In this work, the ability of bovine pancreatic DNase I to reduce the invasive potential of B16 melanoma has been investigated in vitro and in vivo. It was found that DNase I had a cytotoxic effect on B16 melanoma cells (IC50 ≈ 104 U/mL). At the same time, significantly lower doses of DNase I (102–103 U/mL) inhibited the migratory activity of melanoma cells in vitro, causing a decrease in the distance of cell front migration and in the area of scratch healing 48 h after the enzyme addition, as well as reducing the rate of cell migration. In mice with B16 metastatic melanoma, intramuscular administration of DNase I in the dose range of 0.12–1.20 mg/kg resulted in a two-to threefold decrease in the number of surface lung metastases and caused nonspecific antigenic immune stimulation.
Biomaterials | 2017
Olga Patutina; Elena V. Bichenkova; Svetlana K. Miroshnichenko; Nadezhda L. Mironova; Linda T. Trivoluzzi; Kepa K. Burusco; Richard A. Bryce; Valentin V. Vlassov; Marina A. Zenkova