Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olga Pletnikova is active.

Publication


Featured researches published by Olga Pletnikova.


Proceedings of the National Academy of Sciences of the United States of America | 2013

RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia

Tao Zu; Yuanjing Liu; Monica Bañez-Coronel; Tammy Reid; Olga Pletnikova; Jada Lewis; Timothy M. Miller; Matthew B. Harms; Annet E. Falchook; S. H. Subramony; Lyle W. Ostrow; Jeffrey D. Rothstein; Juan C. Troncoso; Laura P.W. Ranum

Significance A GGGGCC expansion mutation located in intron 1 of chromosome 9 ORF 72 (C9ORF72) was recently described as a common cause of familial amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD). We show that this single mutation results in the accumulation of sense and antisense RNA foci plus six expansion proteins expressed by repeat-associated non-ATG (RAN) translation. RNAs accumulate in nuclear foci and the RAN proteins form cytoplasmic aggregates in neurons that often cluster in affected brain regions. These results indicate that bidirectional transcription and RAN translation are fundamental pathologic features of C9ORF72 ALS/FTD. Additionally these data have broad implications that change our understanding of how microsatellite expansion mutations are expressed in patient cells and how they cause disease. The finding that a GGGGCC (G4C2) hexanucleotide repeat expansion in the chromosome 9 ORF 72 (C9ORF72) gene is a common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) links ALS/FTD to a large group of unstable microsatellite diseases. Previously, we showed that microsatellite expansion mutations can be bidirectionally transcribed and that these mutations express unexpected proteins by a unique mechanism, repeat-associated non-ATG (RAN) translation. In this study, we show that C9ORF72 antisense transcripts are elevated in the brains of C9ORF72 expansion-positive [C9(+)] patients, and antisense GGCCCC (G2C4) repeat-expansion RNAs accumulate in nuclear foci in brain. Additionally, sense and antisense foci accumulate in blood and are potential biomarkers of the disease. Furthermore, we show that RAN translation occurs from both sense and antisense expansion transcripts, resulting in the expression of six RAN proteins (antisense: Pro-Arg, Pro-Ala, Gly-Pro; and sense: Gly-Ala, Gly-Arg, Gly-Pro). These proteins accumulate in cytoplasmic aggregates in affected brain regions, including the frontal and motor cortex, hippocampus, and spinal cord neurons, with some brain regions showing dramatic RAN protein accumulation and clustering. The finding that unique antisense G2C4 RNA foci and three unique antisense RAN proteins accumulate in patient tissues indicates that bidirectional transcription of expanded alleles is a fundamental pathologic feature of C9ORF72 ALS/FTD. Additionally, these findings suggest the need to test therapeutic strategies that target both sense and antisense RNAs and RAN proteins in C9ORF72 ALS/FTD, and to more broadly consider the role of antisense expression and RAN translation across microsatellite expansion diseases.


PLOS ONE | 2011

Dopaminergic Neuronal loss, Reduced Neurite Complexity and Autophagic Abnormalities in Transgenic Mice Expressing G2019S Mutant LRRK2

David Ramonet; João Paulo Lima Daher; Brian M. Lin; Klodjan Stafa; Jaekwang Kim; Rebecca Banerjee; Marie Westerlund; Olga Pletnikova; Liliane Glauser; Lichuan Yang; Ying Liu; Deborah A. Swing; M. Flint Beal; Juan C. Troncoso; J. Michael McCaffery; Nancy A. Jenkins; Neal G. Copeland; Dagmar Galter; Bobby Thomas; Michael K. Lee; Ted M. Dawson; Valina L. Dawson; Darren J. Moore

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset, autosomal dominant familial Parkinsons disease (PD) and also contribute to idiopathic PD. LRRK2 mutations represent the most common cause of PD with clinical and neurochemical features that are largely indistinguishable from idiopathic disease. Currently, transgenic mice expressing wild-type or disease-causing mutants of LRRK2 have failed to produce overt neurodegeneration, although abnormalities in nigrostriatal dopaminergic neurotransmission have been observed. Here, we describe the development and characterization of transgenic mice expressing human LRRK2 bearing the familial PD mutations, R1441C and G2019S. Our study demonstrates that expression of G2019S mutant LRRK2 induces the degeneration of nigrostriatal pathway dopaminergic neurons in an age-dependent manner. In addition, we observe autophagic and mitochondrial abnormalities in the brains of aged G2019S LRRK2 mice and markedly reduced neurite complexity of cultured dopaminergic neurons. These new LRRK2 transgenic mice will provide important tools for understanding the mechanism(s) through which familial mutations precipitate neuronal degeneration and PD.


The Journal of Neuroscience | 2005

Accumulation of the Authentic Parkin Substrate Aminoacyl-tRNA Synthetase Cofactor, p38/JTV-1, Leads to Catecholaminergic Cell Death

Han Seok Ko; Rainer von Coelln; Sathya R. Sriram; Seong Who Kim; Kenny K.K. Chung; Olga Pletnikova; Juan C. Troncoso; Brett Johnson; Roya Saffary; Eyleen L. Goh; Hongjun Song; Bum Joon Park; Min Jung Kim; Sunghoon Kim; Valina L. Dawson; Ted M. Dawson

Autosomal-recessive juvenile parkinsonism (AR-JP) is caused by loss-of-function mutations of the parkin gene. Parkin, a RING-type E3 ubiquitin ligase, is responsible for the ubiquitination and degradation of substrate proteins that are important in the survival of dopamine neurons in Parkinsons disease (PD). Accordingly, the abnormal accumulation of neurotoxic parkin substrates attributable to loss of parkin function may be the cause of neurodegeneration in parkin-related parkinsonism. We evaluated the known parkin substrates identified to date in parkin null mice to determine whether the absence of parkin results in accumulation of these substrates. Here we show that only the aminoacyl-tRNA synthetase cofactor p38 is upregulated in the ventral midbrain/hindbrain of both young and old parkin null mice. Consistent with upregulation in parkin knock-out mice, brains of AR-JP and idiopathic PD and diffuse Lewy body disease also exhibit increased level of p38. In addition, p38 interacts with parkin and parkin ubiquitinates and targets p38 for degradation. Furthermore, overexpression of p38 induces cell death that increases with tumor necrosis factor-α treatment and parkin blocks the pro-cell death effect of p38, whereas the R42P, familial-linked mutant of parkin, fails to rescue cell death. We further show that adenovirus-mediated overexpression of p38 in the substantia nigra in mice leads to loss of dopaminergic neurons. Together, our study represents a major advance in our understanding of parkin function, because it clearly identifies p38 as an important authentic pathophysiologic substrate of parkin. Moreover, these results have important implications for understanding the molecular mechanisms of neurodegeneration in PD.


The Journal of Neuroscience | 2012

Endoplasmic Reticulum Stress Is Important for the Manifestations of α-Synucleinopathy In Vivo

Emanuela Colla; Philippe Coune; Ying Liu; Olga Pletnikova; Juan C. Troncoso; Takeshi Iwatsubo; Bernard L. Schneider; Michael K. Lee

Accumulation of misfolded α-synuclein (αS) is mechanistically linked to neurodegeneration in Parkinsons disease (PD) and other α-synucleinopathies. However, how αS causes neurodegeneration is unresolved. Because cellular accumulation of misfolded proteins can lead to endoplasmic reticulum stress/unfolded protein response (ERS/UPR), chronic ERS could contribute to neurodegeneration in α-synucleinopathy. Using the A53T mutant human αS transgenic (A53TαS Tg) mouse model of α-synucleinopathy, we show that disease onset in the αS Tg model is coincident with induction of ER chaperones in neurons exhibiting αS pathology. However, the neuronal ER chaperone induction was not accompanied by the activation of phospho-eIF2α, indicating that α-synucleinopathy is associated with abnormal UPR that could promote cell death. Induction of ERS/UPR was associated with increased levels of ER/microsomal (ER/M) associated αS monomers and aggregates. Significantly, human PD cases also exhibit higher relative levels of ER/M αS than the control cases. Moreover, αS interacts with ER chaperones and overexpression of αS sensitizes neuronal cells to ERS-induced toxicity, suggesting that αS may have direct impact on ER function. This view is supported by the presence of ERS-activated caspase-12 and the accumulation of ER-associated polyubiquitin. More important, treatment with Salubrinal, an anti-ERS compound, significantly attenuates disease manifestations in both the A53TαS Tg mouse model and the adeno-associated virus-transduced rat model of A53TαS-dependent dopaminergic neurodegeneration. Our data indicate that the accumulation αS within ER leads to chronic ER stress conditions that contribute to neurodegeneration in α-synucleinopathies. Attenuating chronic ERS could be an effective therapy for PD and other α-synucleinopathies.


Annals of Neurology | 2008

Effect of Infarcts on Dementia in the Baltimore Longitudinal Study of Aging

Juan C. Troncoso; Alan B. Zonderman; Susan M. Resnick; Barbara J. Crain; Olga Pletnikova; Richard O'Brien

To define the magnitude and mechanism of the effect of brain infarcts on the odds of dementia in a prospective study.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Phosphorylation by the c-Abl protein tyrosine kinase inhibits parkin's ubiquitination and protective function

Han Seok Ko; Yunjong Lee; Joo Ho Shin; Senthilkumar S. Karuppagounder; Bharathi Shrikanth Gadad; Anthony J. Koleske; Olga Pletnikova; Juan C. Troncoso; Valina L. Dawson; Ted M. Dawson

Mutations in PARK2/Parkin, which encodes a ubiquitin E3 ligase, cause autosomal recessive Parkinson disease (PD). Here we show that the nonreceptor tyrosine kinase c-Abl phosphorylates tyrosine 143 of parkin, inhibiting parkins ubiquitin E3 ligase activity and protective function. c-Abl is activated by dopaminergic stress and by dopaminergic neurotoxins, 1-methyl-4-phenylpyridinium (MPP+) in vitro and in vivo by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), leading to parkin inactivation, accumulation of the parkin substrates aminoacyl-tRNA synthetase-interacting multifunctional protein type 2 (AIMP2) (p38/JTV-1) and fuse-binding protein 1 (FBP1), and cell death. STI-571, a c-Abl-family kinase inhibitor, prevents the phosphorylation of parkin, maintaining parkin in a catalytically active and protective state. STI-571’s protective effects require parkin, as shRNA knockdown of parkin prevents STI-571 protection. Conditional knockout of c-Abl in the nervous system also prevents the phosphorylation of parkin, the accumulation of its substrates, and subsequent neurotoxicity in response to MPTP intoxication. In human postmortem PD brain, c-Abl is active, parkin is tyrosine-phosphorylated, and AIMP2 and FBP1 accumulate in the substantia nigra and striatum. Thus, tyrosine phosphorylation of parkin by c-Abl is a major posttranslational modification that inhibits parkin function, possibly contributing to pathogenesis of sporadic PD. Moreover, inhibition of c-Abl may be a neuroprotective approach in the treatment of PD.


The Journal of Neuroscience | 2012

Accumulation of toxic α-synuclein oligomer within endoplasmic reticulum occurs in α-synucleinopathy in vivo.

Emanuela Colla; Poul Henning Jensen; Olga Pletnikova; Juan C. Troncoso; Charles G. Glabe; Michael K. Lee

In Parkinsons disease (PD) and other α-synucleinopathies, prefibrillar α-synuclein (αS) oligomer is implicated in the pathogenesis. However, toxic αS oligomers observed using in vitro systems are not generally seen to be associated with α-synucleinopathy in vivo. Thus, the pathologic significance of αS oligomers to αS neurotoxicity is unknown. Herein, we show that, αS that accumulate within endoplasmic reticulum (ER)/microsome forms toxic oligomers in mouse and human brain with the α-synucleinopathy. In the mouse model of α-synucleinopathy, αS oligomers initially form before the onset of disease and continue to accumulate with the disease progression. Significantly, treatment of αS transgenic mice with Salubrinal, an anti-ER stress compound that delays the onset of disease, reduces ER accumulation of αS oligomers. These results indicate that αS oligomers with toxic conformation accumulate in ER, and αS oligomer-dependent ER stress is pathologically relevant for PD.


The New England Journal of Medicine | 2012

Repeat Expansion in C9ORF72 in Alzheimer's Disease

Elisa Majounie; Yevgeniya Abramzon; Alan E. Renton; Rodney T. Perry; Susan Spear Bassett; Olga Pletnikova; Juan C. Troncoso; John Hardy; Andrew Singleton; Bryan J. Traynor

A hexanucleotide repeat expansion in the gene C9ORF72 has been implicated in the development of amyotrophic lateral sclerosis and frontotemporal dementia. The variant has also been found in a small percentage of patients with probable late-onset Alzheimers disease.


Neurology | 2009

The Nun Study Clinically silent AD, neuronal hypertrophy, and linguistic skills in early life

Diego Iacono; William R. Markesbery; Myron D. Gross; Olga Pletnikova; G. Rudow; Peter P. Zandi; Juan C. Troncoso

Background: It is common to find substantial Alzheimer disease (AD) lesions, i.e., neuritic β-amyloid plaques and neurofibrillary tangles, in the autopsied brains of elderly subjects with normal cognition assessed shortly before death. We have termed this status asymptomatic AD (ASYMAD). We assessed the morphologic substrate of ASYMAD compared to mild cognitive impairment (MCI) in subjects from the Nun Study. In addition, possible correlations between linguistic abilities in early life and the presence of AD pathology with and without clinical manifestations in late life were considered. Methods: Design-based stereology was used to measure the volumes of neuronal cell bodies, nuclei, and nucleoli in the CA1 region of hippocampus (CA1). Four groups of subjects were compared: ASYMAD (n = 10), MCI (n = 5), AD (n = 10), and age-matched controls (n = 13). Linguistic ability assessed in early life was compared among all groups. Results: A significant hypertrophy of the cell bodies (+44.9%), nuclei (+59.7%), and nucleoli (+80.2%) in the CA1 neurons was found in ASYMAD compared with MCI. Similar differences were observed with controls. Furthermore, significant higher idea density scores in early life were observed in controls and ASYMAD group compared to MCI and AD groups. Conclusions: 1) Neuronal hypertrophy may constitute an early cellular response to Alzheimer disease (AD) pathology or reflect compensatory mechanisms that prevent cognitive impairment despite substantial AD lesions; 2) higher idea density scores in early life are associated with intact cognition in late life despite the presence of AD lesions.


Proceedings of the National Academy of Sciences of the United States of America | 2009

S-nitrosylation of XIAP compromises neuronal survival in Parkinson's disease

Anthony H.K. Tsang; Yun I L Lee; Han Seok Ko; Joseph M. Savitt; Olga Pletnikova; Juan C. Troncoso; Valina L. Dawson; Ted M. Dawson; Kenny K.K. Chung

Inhibitors of apoptosis (IAPs) are a family of highly-conserved proteins that regulate cell survival through binding to caspases, the final executioners of apoptosis. X-linked IAP (XIAP) is the most widely expressed IAP and plays an important function in regulating cell survival. XIAP contains 3 baculoviral IAP repeats (BIRs) followed by a RING finger domain at the C terminal. The BIR domains of XIAP possess anticaspase activities, whereas the RING finger domain enables XIAP to function as an E3 ubiquitin ligase in the ubiquitin and proteasomal system. Our previous study showed that parkin, a protein that is important for the survival of dopaminergic neurons in Parkinsons disease (PD), is S-nitrosylated both in vitro and in vivo in PD patients. S-nitrosylation of parkin compromises its ubiquitin E3 ligase activity and its protective function, which suggests that nitrosative stress is an important factor in regulating neuronal survival during the pathogenesis of PD. In this study we show that XIAP is S-nitrosylated in vitro and in vivo in an animal model of PD and in PD patients. Nitric oxide modifies mainly cysteine residues within the BIR domains. In contrast to parkin, S-nitrosylation of XIAP does not affect its E3 ligase activity, but instead directly compromises its anticaspase-3 and antiapoptotic function. Our results confirm that nitrosative stress contributes to PD pathogenesis through the impairment of prosurvival proteins such as parkin and XIAP through different mechanisms, indicating that abnormal S-nitrosylation plays an important role in the process of neurodegeneration.

Collaboration


Dive into the Olga Pletnikova's collaboration.

Top Co-Authors

Avatar

Juan C. Troncoso

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ted M. Dawson

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Barbara J. Crain

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Susan M. Resnick

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valina L. Dawson

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Diego Iacono

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Alan B. Zonderman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yang An

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Christopher A. Ross

Johns Hopkins University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge