Olga Popelová
Charles University in Prague
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olga Popelová.
Pharmacological Reports | 2009
Tomáš Šimůnek; Martin Štěrba; Olga Popelová; Michaela Adamcová; Radomír Hrdina; Vladimír Geršl
The risk of cardiotoxicity is the most serious drawback to the clinical usefulness of anthracycline antineoplastic antibiotics, which include doxorubicin (adriamycin), daunorubicin or epirubicin. Nevertheless, these compounds remain among the most widely used anticancer drugs. The molecular pathogenesis of anthracycline cardiotoxicity remains highly controversial, although the oxidative stress-based hypothesis involving intramyocardial production of reactive oxygen species (ROS) has gained the widest acceptance. Anthracyclines may promote the formation of ROS through redox cycling of their aglycones as well as their anthracycline-iron complexes. This proposed mechanism has become particularly popular in light of the high cardioprotective efficacy of dexrazoxane (ICRF-187). The mechanism of action of this drug has been attributed to its hydrolytic transformation into the iron-chelating metabolite ADR-925, which may act by displacing iron from anthracycline-iron complexes or by chelating free or loosely bound cellular iron, thus preventing site-specific iron-catalyzed ROS damage. However, during the last decade, calls for the critical reassessment of this ROS and iron hypothesis have emerged. Numerous antioxidants, although efficient in cellular or acute animal experiments, have failed to alleviate anthracycline cardiotoxicity in clinically relevant chronic animal models or clinical trials. In addition, studies with chelators that are stronger and more selective for iron than ADR-925 have also yielded negative or, at best, mixed outcomes. Hence, several lines of evidence suggest that mechanisms other than the traditionally emphasized ROS and iron hypothesis are involved in anthracycline-induced cardiotoxicity and that these alternative mechanisms may be better bases for designing approaches to achieve efficient and safe cardioprotection.
Antioxidants & Redox Signaling | 2013
Martin Štěrba; Olga Popelová; Anna Vávrová; Eduard Jirkovský; Petra Kovaříková; Vladimír Geršl; Tomáš Šimůnek
SIGNIFICANCEnAnthracyclines (doxorubicin, daunorubicin, or epirubicin) rank among the most effective anticancer drugs, but their clinical usefulness is hampered by the risk of cardiotoxicity. The most feared are the chronic forms of cardiotoxicity, characterized by irreversible cardiac damage and congestive heart failure. Although the pathogenesis of anthracycline cardiotoxicity seems to be complex, the pivotal role has been traditionally attributed to the iron-mediated formation of reactive oxygen species (ROS). In clinics, the bisdioxopiperazine agent dexrazoxane (ICRF-187) reduces the risk of anthracycline cardiotoxicity without a significant effect on response to chemotherapy. The prevailing concept describes dexrazoxane as a prodrug undergoing bioactivation to an iron-chelating agent ADR-925, which may inhibit anthracycline-induced ROS formation and oxidative damage to cardiomyocytes.nnnRECENT ADVANCESnA considerable body of evidence points to mitochondria as the key targets for anthracycline cardiotoxicity, and therefore it could be also crucial for effective cardioprotection. Numerous antioxidants and several iron chelators have been tested in vitro and in vivo with variable outcomes. None of these compounds have matched or even surpassed the effectiveness of dexrazoxane in chronic anthracycline cardiotoxicity settings, despite being stronger chelators and/or antioxidants.nnnCRITICAL ISSUESnThe interpretation of many findings is complicated by the heterogeneity of experimental models and frequent employment of acute high-dose treatments with limited translatability to clinical practice.nnnFUTURE DIRECTIONSnDexrazoxane may be the key to the enigma of anthracycline cardiotoxicity, and therefore it warrants further investigation, including the search for alternative/complementary modes of cardioprotective action beyond simple iron chelation.
Expert Opinion on Drug Safety | 2005
Michaela Adamcová; Martin Sterba; Tomas Simunek; Potácová A; Olga Popelová; Yvona Mazurová; Vladimír Geršl
Cardiac troponins T and I (cTnT and cTnI) are becoming the serum biomarkers of choice for monitoring potential drug-induced myocardial injury in both clinical and preclinical studies. The utility of cardiac troponins has been mainly demonstrated following the administration of antineoplastic drugs and β-sympathomimetics, although the routine use of these markers in the monitoring in patients who received anthracyclines therapy is far from settled. Unlike the previous markers, which suffered from numerous shortages, the main advantages of cardiac troponins are their high specificity and sensitivity, wide diagnostic window and the possibility to use commercially available assays in clinical settings as well as in a broad range of laboratory animals. Nevertheless, in spite of vigorous research in this area, a number of questions are still unanswered and these are discussed in this review. The main problems seem to be the lack of standardisation of variety of troponin immunoassays, the assessment of suitable cutoff for drug-induced cardiotoxicity and determination of critical diagnostic window related to the optimal tim-ing of sample collection, which may be drug-dependent.
Chemical Research in Toxicology | 2010
Petra Bendova; Eliška Macková; Pavlína Hašková; Anna Vávrová; Eduard Jirkovsky; Martin Sterba; Olga Popelová; Danuta S. Kalinowski; Petra Kovarikova; Katerina Vavrova; Des R. Richardson; Tomas Simunek
Iron imbalance plays an important role in oxidative stress associated with numerous pathological conditions. Therefore, iron chelation may be an effective therapeutic approach, but progress in this area is hindered by the lack of effective ligands. Also, the potential favorable effects of chelators against oxidative injury have to be balanced against their own toxicity due to iron depletion and the ability to generate redox-active iron complexes. In this study, we compared selected iron chelators (both drugs used in clinical practice as well as experimental agents) for their efficacy to protect cells against model oxidative injury induced by tert-butyl hydroperoxide (t-BHP). In addition, intracellular chelation efficiency, redox activity, and the cytotoxicity of the chelators and their iron complexes were assayed. Ethylenediaminetetraacetic acid failed to protect cells against t-BHP cytotoxicity, apparently due to the redox activity of the formed iron complex. Hydrophilic desferrioxamine exerted some protection but only at very high clinically unachievable concentrations. The smaller and more lipophilic chelators, deferiprone, deferasirox, and pyridoxal isonicotinoyl hydrazone, were markedly more effective at preventing oxidative injury of cells. The most effective chelator in terms of access to the intracellular labile iron pool was di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone. However, overall, the most favorable properties in terms of protective efficiency against t-BHP and the chelators own inherent cytotoxicity were observed with salicylaldehyde isonicotinoyl hydrazone. This probably relates to the optimal lipophilicity of this latter agent and its ability to generate iron complexes that do not induce marked redox activity.
Toxicology | 2007
Michaela Adamcová; Tomáš Šimůnek; Helena Kaiserová; Olga Popelová; Martin Štěrba; Potácová A; Jaroslava Vávrová; Jana Maláková; Vladimír Geršl
Cardiac troponin T (cTnT) and troponin I (cTnI) are becoming acknowledged as useful biochemical markers of drug-induced cardiotoxicity. In this study we examined the release kinetics of cTnT and cTnI using an in vitro model of isolated rat neonatal ventricular cardiomyocytes (NVCM, 72h treatment with 0.1-3microM of daunorubicin) and compared it with data from a rabbit model of chronic anthracycline-induced cardiomyopathy in vivo (3mg/kg of daunorubicin weekly, 10 weeks). In cell-culture media, the cTnI and cTnT concentrations were concentration- and time-dependently increasing in response to daunorubicin exposure and were negatively exponentially related to cardiomyocyte viability. With 3microM daunorubicin, the relative increase of AUC of cTnT and cTnI was 2.4- and 5.3-fold higher than the increase of LDH activity, respectively. In rabbits, the daunorubicin-induced cardiomyopathy was associated with progressive increase of both cTnT and cTnI. Although the correlation between cTnT and cTnI cumulative release (AUCs) was found (R=0.81; P<0.01) and both cardiac troponins corresponded well with the echocardiographically-assessed systolic dysfunction (R=0.83 and 0.81 for cTnT and cTnI, respectively; P<0.001), the first significant increase in cTnI levels was observed earlier (at a cumulative daunorubicin dose of 200mg/m(2)) than with cTnT (350mg/m(2)). In conclusion, our study has confirmed cTnT and cTnI as very sensitive and specific markers of anthracycline-induced cardiotoxicity. The troponins can become not only the bridge between the clinical and experimental studies of drug-induced cardiotoxicity but also the linkage between the preclinical experiments in vitro and in vivo.
Journal of Molecular and Cellular Cardiology | 2011
Martin Štěrba; Olga Popelová; Juraj Lenčo; Alena Fučíková; Eva Brcakova; Yvona Mazurová; Eduard Jirkovský; Tomáš Šimůnek; Michaela Adamcová; Stanislav Micuda; Jiří Stulík; Vladimír Geršl
Chronic anthracycline cardiotoxicity is a feared complication of cancer chemotherapy. However, despite several decades of primarily hypothesis-driven research, the molecular basis of this phenomenon remains poorly understood. The aim of this study was to obtain integrative molecular insights into chronic anthracycline cardiotoxicity and the resulting heart failure. Cardiotoxicity was induced in rabbits (daunorubicin 3mg/kg, weekly, 10weeks) and changes in the left ventricular proteome were analyzed by 2D-DIGE. The protein spots with significant changes (p<0.01, >1.5-fold) were identified using MALDI-TOF/TOF. Key data were corroborated by immunohistochemistry, qRT-PCR and enzyme activity determination and compared with functional, morphological and biochemical data. The most important alterations were found in mitochondria - especially in proteins crucial for oxidative phosphorylation, energy channeling, antioxidant defense and mitochondrial stress. Furthermore, the intermediate filament desmin, which interacts with mitochondria, was determined to be distinctly up-regulated and disorganized in its expression pattern. Interestingly, the latter changes reflected the intensity of toxic damage in whole hearts as well as in individual cells. In addition, a marked drop in myosin light chain isoforms, activation of proteolytic machinery (including the proteasome system), increased abundance of chaperones and proteins involved in chaperone-mediated autophagy, membrane repair as well as apoptosis were found. In addition, dramatic changes in proteins of basement membrane and extracellular matrix were documented. In conclusion, for the first time, the complex proteomic signature of chronic anthracycline cardiotoxicity was revealed which enhances our understanding of the basis for this phenomenon and it may enhance efforts in targeting its reduction.
British Journal of Cancer | 2009
Olga Popelová; Martin Štěrba; Pavlína Hašková; Tomáš Šimůnek; Milos Hroch; Ivana Gunčová; Petr Nachtigal; Michaela Adamcová; Vladimír Geršl; Yvona Mazurová
Background:Dexrazoxane (DEX, ICRF-187) is the only clinically approved cardioprotectant against anthracycline cardiotoxicity. It has been traditionally postulated to undergo hydrolysis to iron-chelating agent ADR-925 and to prevent anthracycline-induced oxidative stress, progressive cardiomyocyte degeneration and subsequent non-programmed cell death. However, the additional capability of DEX to protect cardiomyocytes from apoptosis has remained unsubstantiated under clinically relevant in vivo conditions.Methods:Chronic anthracycline cardiotoxicity was induced in rabbits by repeated daunorubicin (DAU) administrations (3u2009mgu2009kg−1 weekly for 10 weeks). Cardiomyocyte apoptosis was evaluated using TUNEL (terminal deoxynucleotidyl transferase biotin-dUTP nick end labelling) assay and activities of caspases 3/7, 8, 9 and 12. Lipoperoxidation was assayed using HPLC determination of myocardial malondialdehyde and 4-hydroxynonenal immunodetection.Results:Dexrazoxane (60u2009mgu2009kg−1) co-treatment was capable of overcoming DAU-induced mortality, left ventricular dysfunction, profound structural damage of the myocardium and release of cardiac troponin T and I to circulation. Moreover, for the first time, it has been shown that DEX affords significant and nearly complete cardioprotection against anthracycline-induced apoptosis in vivo and effectively suppresses the complex apoptotic signalling triggered by DAU. In individual animals, the severity of apoptotic parameters significantly correlated with cardiac function. However, this effective cardioprotection occurred without a significant decrease in anthracycline-induced lipoperoxidation.Conclusion:This study identifies inhibition of apoptosis as an important target for effective cardioprotection against chronic anthracycline cardiotoxicity and suggests that lipoperoxidation-independent mechanisms are involved in the cardioprotective action of DEX.
Journal of Pharmacology and Experimental Therapeutics | 2012
Eduard Jirkovský; Olga Popelová; Pavla Křiváková-Staňková; Anna Vávrová; Milos Hroch; Pavlína Hašková; Eva Brčáková-Doleželová; Stanislav Micuda; Michaela Adamcová; Tomáš Šimůnek; Zuzana Červinková; Vladimír Geršl; Martin Štěrba
Anthracycline anticancer drugs (e.g., doxorubicin or daunorubicin) can induce chronic cardiotoxicity and heart failure (HF), both of which are believed to be based on oxidative injury and mitochondrial damage. In this study, molecular and functional changes induced by chronic anthracycline treatment with progression into HF in post-treatment follow-up were analyzed with special emphasis on nuclear factor erythroid 2-related factor 2 (Nrf2) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) pathways. Chronic cardiotoxicity was induced in rabbits with daunorubicin (3 mg/kg, weekly for 10 weeks), and the animals were followed for another 10 weeks. Echocardiography revealed a significant drop in left ventricular (LV) systolic function during the treatment with marked progression to LV dilation and congestive HF in the follow-up. Although daunorubicin-induced LV lipoperoxidation was found, it was only loosely associated with cardiac performance. Furthermore, although LV oxidized glutathione content was increased, the oxidized-to-reduced glutathione ratio itself remained unchanged. Neither Nrf2, the master regulator of antioxidant response, nor the majority of its target genes showed up-regulation in the study. However, down-regulation of manganese superoxide dismutase and NAD(P)H dehydrogenase [quinone] 1 were observed together with heme oxygenase 1 up-regulation. Although marked perturbations in mitochondrial functions were found, no induction of PGC1α-controlled mitochondrial biogenesis pathway was revealed. Instead, especially in the post-treatment period, an impaired regulation of this pathway was observed along with down-regulation of the expression of mitochondrial genes. These results imply that global oxidative stress need not be a factor responsible for the development of anthracycline-induced HF, whereas suppression of mitochondrial biogenesis might be involved.
Journal of Pharmacology and Experimental Therapeutics | 2008
Olga Popelová; Martin Sterba; Tomas Simunek; Yvona Mazurová; Ivana Gunčová; Milos Hroch; Michaela Adamcová; Vladimír Geršl
Anthracycline cardiotoxicity ranks among the most severe complications of cancer chemotherapy. Although its pathogenesis is only incompletely understood, “reactive oxygen species (ROS) and iron” hypothesis has gained the widest acceptance. Besides dexrazoxane, novel oral iron chelator deferiprone has been recently reported to afford significant cardioprotection in both in vitro and ex vivo conditions. Therefore, the aim of this study was to assess whether deferiprone 1) has any effect on the anticancer action of daunorubicin and 2) whether it can overcome or significantly reduce the chronic anthracycline cardiotoxicity in the in vivo rabbit model (daunorubicin, 3 mg/kg i.v., weekly for 10 weeks). First, using the leukemic cell line, deferiprone (1–300 μM) was shown not to blunt the antiproliferative effect of daunorubicin. Instead, in clinically relevant concentrations (>10 μM), deferiprone augmented the antiproliferative action of daunorubicin. However, deferiprone (10 or 50 mg/kg administered p.o. before each daunorubicin dose) failed to afford significant protection against daunorubicin-induced mortality, left ventricular lipoperoxidation, cardiac dysfunction, and morphological cardiac deteriorations, as well as an increase in plasma cardiac troponin T. Hence, this first in vivo study changes the current view on deferiprone as a potential cardioprotectant against anthracycline cardiotoxicity. In addition, these results, together with our previous findings, further suggest that the role of iron and its chelation in anthracycline cardiotoxicity is not as trivial as originally believed and/or other mechanisms unrelated to iron-catalyzed ROS production are involved.
British Journal of Pharmacology | 2008
Tomáš Šimůnek; Martin Štěrba; Olga Popelová; Helena Kaiserová; Michaela Adamcová; Milos Hroch; Pavlína Hašková; Přemysl Poňka; Vladimír Geršl
The clinical utility of anthracycline antineoplastic drugs is limited by the risk of cardiotoxicity, which has been traditionally attributed to iron‐mediated production of reactive oxygen species (ROS).