Olga Ruiz-Andres
Autonomous University of Madrid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olga Ruiz-Andres.
Nephrology Dialysis Transplantation | 2012
Maria C. Izquierdo; Maria Vanessa Perez-Gomez; Maria Dolores Sanchez-Niño; Ana Belen Sanz; Olga Ruiz-Andres; Jonay Poveda; Juan Antonio Moreno; Jesús Egido; Alberto Ortiz
Evidence is emerging for the inflammatory nature of many ageing-associated diseases, including atherosclerosis, vascular calcification, diabetes and chronic kidney disease (CKD), among others. Ageing itself results in chronic low-grade inflammation that promotes end-organ damage. Inflammatory organ damage, in turn, may contribute to inflammation. Recent research has identified the kidney-secreted hormone Klotho as a central player at the ageing-inflammation interface. Thus, systemic or local renal inflammation decreases kidney Klotho expression. Klotho down-regulation may be induced by specific cytokines such as tumour necrosis factor-α or TWEAK through the canonical activation of the inflammatory transcription factor nuclear factor kappa B (NFκB) and, specifically RelA. In addition, inflammatory cytokines lead to the epigenetic inactivation of Klotho transcription. Klotho itself has antioxidant and anti-inflammatory properties and the canonical NFκB component RelA is one of its targets. Klotho is a key regulator of phosphate balance and a role of phosphate in ageing has been shown. However, the potential relationship between phosphate and inflammation requires further clarification. A correct understanding of these interactions may lead to the design of novel therapeutic approaches to CKD and CKD-related inflammatory and ageing features as well as to inflammation/ageing in general.
Journal of The American Society of Nephrology | 2017
Diego Martin-Sanchez; Olga Ruiz-Andres; Jonay Poveda; Susana Carrasco; Pablo Cannata-Ortiz; Maria Dolores Sanchez-Niño; Marta Ruiz Ortega; Jesús Egido; Andreas Linkermann; Alberto Ortiz; Ana Belen Sanz
AKI is histologically characterized by necrotic cell death and inflammation. Diverse pathways of regulated necrosis have been reported to contribute to AKI, but the molecular regulators involved remain unclear. We explored the relative contributions of ferroptosis and necroptosis to folic acid (FA)-induced AKI in mice. FA-AKI in mice associates with lipid peroxidation and downregulation of glutathione metabolism proteins, features that are typical of ferroptotic cell death. We show that ferrostatin-1 (Fer-1), an inhibitor of ferroptosis, preserved renal function and decreased histologic injury, oxidative stress, and tubular cell death in this model. With respect to the immunogenicity of ferroptosis, Fer-1 prevented the upregulation of IL-33, an alarmin linked to necroptosis, and other chemokines and cytokines and prevented macrophage infiltration and Klotho downregulation. In contrast, the pancaspase inhibitor zVAD-fmk did not protect against FA-AKI. Additionally, although FA-AKI resulted in increased protein expression of the necroptosis mediators receptor-interacting protein kinase 3 (RIPK3) and mixed lineage domain-like protein (MLKL), targeting necroptosis with the RIPK1 inhibitor necrostatin-1 or genetic deficiency of RIPK3 or MLKL did not preserve renal function. Indeed, compared with wild-type mice, MLKL knockout mice displayed more severe AKI. However, RIPK3 knockout mice with AKI had less inflammation than their wild-type counterparts, and this effect associated with higher IL-10 concentration and regulatory T cell-to-leukocyte ratio in RIPK3 knockout mice. These data suggest that ferroptosis is the primary cause of FA-AKI and that immunogenicity secondary to ferroptosis may further worsen the damage, although necroptosis-related proteins may have additional roles in AKI.
Disease Models & Mechanisms | 2016
Olga Ruiz-Andres; Maria Dolores Sanchez-Niño; Pablo Cannata-Ortiz; Marta Ruiz-Ortega; Jesús Egido; Alberto Ortiz; Ana Belen Sanz
ABSTRACT Acute kidney injury (AKI) is a potentially lethal condition for which no therapy is available beyond replacement of renal function. Post-translational histone modifications modulate gene expression and kidney injury. Histone crotonylation is a recently described post-translational modification. We hypothesized that histone crotonylation might modulate kidney injury. Histone crotonylation was studied in cultured murine proximal tubular cells and in kidneys from mice with AKI induced by folic acid or cisplatin. Histone lysine crotonylation was observed in tubular cells from healthy murine and human kidney tissue. Kidney tissue histone crotonylation increased during AKI. This was reproduced by exposure to the protein TWEAK in cultured tubular cells. Specifically, ChIP-seq revealed enrichment of histone crotonylation at the genes encoding the mitochondrial biogenesis regulator PGC-1α and the sirtuin-3 decrotonylase in both TWEAK-stimulated tubular cells and in AKI kidney tissue. To assess the role of crotonylation in kidney injury, crotonate was used to increase histone crotonylation in cultured tubular cells or in the kidneys in vivo. Crotonate increased the expression of PGC-1α and sirtuin-3, and decreased CCL2 expression in cultured tubular cells and healthy kidneys. Systemic crotonate administration protected from experimental AKI, preventing the decrease in renal function and in kidney PGC-1α and sirtuin-3 levels as well as the increase in CCL2 expression. For the first time, we have identified factors such as cell stress and crotonate availability that increase histone crotonylation in vivo. Overall, increasing histone crotonylation might have a beneficial effect on AKI. This is the first observation of the in vivo potential of the therapeutic manipulation of histone crotonylation in a disease state. Summary: We have assessed the effect of the epigenetic post-translational modification histone crotonylation during kidney injury in vivo and in cell culture, and the involvement of PGC-1α and SIRT3 in the process.
American Journal of Physiology-renal Physiology | 2016
Olga Ruiz-Andres; Maria Dolores Sanchez-Niño; Juan Antonio Moreno; Marta Ruiz-Ortega; Adrián M. Ramos; Ana Belen Sanz; Alberto Ortiz
Chronic kidney disease (CKD) is associated to an increased risk of death, CKD progression, and acute kidney injury (AKI) even from early stages, when glomerular filtration rate (GFR) is preserved. The link between early CKD and these risks is unclear, since there is no accumulation of uremic toxins. However, pathological albuminuria and kidney inflammation are frequent features of early CKD, and the production of kidney protective factors may be decreased. Indeed, Klotho expression is already decreased in CKD category G1 (normal GFR). Klotho has anti-aging and nephroprotective properties, and decreased Klotho levels may contribute to increase the risk of death, CKD progression, and AKI. In this review, we discuss the downregulation by mediators of inflammation of molecules with systemic and/or renal local protective functions, exemplified by Klotho and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a transcription factor that promotes mitochondrial biogenesis. Cytokines such as TWEAK, TNF-α, or transforming growth factor -β1 produced locally during kidney injury or released from inflammatory sites at other organs may decrease kidney expression of Klotho and PGC-1α or lead to suboptimal recruitment of these nephroprotective proteins. Transcription factors (e.g., Smad3 and NF-κB) and epigenetic mechanisms (e.g., histone acetylation or methylation) contribute to downregulate the expression of Klotho and/or PGC-1α, while histone crotonylation promotes PGC-1α expression. NF-κBiz facilitates the repressive effect of NF-κB on Klotho expression. A detailed understanding of these mediators may contribute to the development of novel therapeutic approaches to prevent CKD progression and its negative impact on mortality and AKI.
Nefrologia | 2012
Maria C. Izquierdo; Sanz Ab; Sánchez-Nino; Maria Vanessa Perez-Gomez; Marta Ruiz-Ortega; Jonay Poveda; Olga Ruiz-Andres; Adrián M. Ramos; Moreno Ja; Jesús Egido; Alberto Ortiz
There are no pathophysiolgical therapeutic approaches to acute kidney injury (AKI) and the mortality remains high. In addition chronic kidney disease (CKD) predisposes to AKI and AKI contributes to progression of CKD. Recently a transcriptomics approach unveiled a relationship between AKI, inflammation and the regulation of ageing. A transcriptomics analysis of experimental AKI revealed increased kidney expression of Fn14 and transmembrane chemokine CXCL16, as well as a decreased expression of the kidney-secreted anti-ageing hormone Klotho. Fn14 is the receptor for tumor necrosis factor-like weak inducer of apoptosis (TWEAK), a member of the TNF superfamily. In AKI kidneys there was a positive correlation between Fn14 and CXCL16 mRNA expression and an inverse correlation between Fn14 and Klotho mRNA. Tubular cells were the site of Fn14, CXCL16 and Klotho expression in vivo. Research on the relationships between these three molecules disclosed that TWEAK activation of Fn14 promoted inflammation through secretion of chemokines such as CXL16 in tubular cells in culture and in vivo. Furthermore, TWEAK activation of Fn14 decreased expression of Klotho mRNA and protein in culture and in vivo. Interestingly, both TWEAK activation of CXCL16 mRNA transcription and suppression of Klotho mRNA transcription were mediated by the NFκB transcription factor. In conclusion, TWEAK engagement of Fn14 is a central event promoting NFκB-mediated activation of inflammation pathways and suppression of anti-inflammatory/anti-ageing pathways. This information may influence future therapeutic approaches to AKI and inflammation/aging.
PLOS ONE | 2012
Ana Belen Sanz; Maria Dolores Sanchez-Niño; Susana Carrasco; Félix Manzarbeitia; Olga Ruiz-Andres; Rafael Selgas; Marta Ruiz-Ortega; Carmen Gonzalez-Enguita; Jesús Egido; Alberto Ortiz
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK, TNFSF12) is a member of the tumor necrosis factor superfamily. TWEAK activates the Fn14 receptor, and may regulate cell death, survival and proliferation in tumor cells. However, there is little information on the function and regulation of this system in prostate cancer. Fn14 expression and TWEAK actions were studied in two human prostate cancer cell lines, the androgen-independent PC-3 cell line and androgen-sensitive LNCaP cells. Additionally, the expression of Fn14 was analyzed in human biopsies of prostate cancer. Fn14 expression is increased in histological sections of human prostate adenocarcinoma. Both prostate cancer cell lines express constitutively Fn14, but, the androgen-independent cell line PC-3 showed higher levels of Fn14 that the LNCaP cells. Fn14 expression was up-regulated in PC-3 human prostate cancer cells in presence of inflammatory cytokines (TNFα/IFNγ) as well as in presence of bovine fetal serum. TWEAK induced apoptotic cell death in PC-3 cells, but not in LNCaP cells. Moreover, in PC-3 cells, co-stimulation with TNFα/IFNγ/TWEAK induced a higher rate of apoptosis. However, TWEAK or TWEAK/TNFα/IFNγ did not induce apoptosis in presence of bovine fetal serum. TWEAK induced cell death through activation of the Fn14 receptor. Apoptosis was associated with activation of caspase-3, release of mitochondrial cytochrome C and an increased Bax/BclxL ratio. TWEAK/Fn14 pathway activation promotes apoptosis in androgen-independent PC-3 cells under certain culture conditions. Further characterization of the therapeutic target potential of TWEAK/Fn14 for human prostate cancer is warranted.
International Reviews of Immunology | 2014
Ana Belen Sanz; Maria Dolores Sanchez-Niño; Maria C. Izquierdo; Alvaro C. Ucero; Jonay Poveda; Olga Ruiz-Andres; Marta Ruiz-Ortega; Rafael Selgas; Jesús Egido; Alberto Ortiz
Recent advances in cell death biology have uncovered an ever increasing range of cell death forms. Macrophages have a bidirectional relationship with cell death that modulates the immune response. Thus, macrophages engulf apoptotic cells and secrete cytokines that may promote cell death in parenchymal cells. Furthermore, the presence of apoptotic or necrotic dead cells in the microenvironment elicits differential macrophage responses. Apoptotic cells elicit anti-inflammatory responses in macrophages. By contrast macrophages may undergo a proinflammatory form of cell death (pyroptosis) in response to damage-associated molecular patterns (DAMPs) released from necrotic cells and also in response to pathogen-associated molecular patterns (PAMPs). Pyroptosis is a recently identified form of cell death that occurs predominantly in subsets of inflammatory macrophages and is associated to the release of interleukin-1β (IL-1β) and IL-18. Deregulation of these processes may result in disease. Thus, failure of macrophages to engulf apoptotic cells may be a source of autoantigens in autoimmune diseases, excessive macrophage release of proapoptotic factors or sterile pyroptosis may contribute to tissue injury and failure of pathogen-induced pyroptosis may contribute to pathogen survival. Ongoing research is exploring the therapeutic opportunities resulting this new knowledge.
Nefrologia | 2017
Diego Martin-Sanchez; Jonay Poveda; Miguel Fontecha-Barriuso; Olga Ruiz-Andres; Maria Dolores Sanchez-Niño; Marta Ruiz-Ortega; Alberto Ortiz; Ana Belen Sanz
The term acute tubular necrosis was thought to represent a misnomer derived from morphological studies of human necropsies and necrosis was thought to represent an unregulated passive form of cell death which was not amenable to therapeutic manipulation. Recent advances have improved our understanding of cell death in acute kidney injury. First, apoptosis results in cell loss, but does not trigger an inflammatory response. However, clumsy attempts at interfering with apoptosis (e.g. certain caspase inhibitors) may trigger necrosis and, thus, inflammation-mediated kidney injury. Second, and most revolutionary, the concept of regulated necrosis emerged. Several modalities of regulated necrosis were described, such as necroptosis, ferroptosis, pyroptosis and mitochondria permeability transition regulated necrosis. Similar to apoptosis, regulated necrosis is modulated by specific molecules that behave as therapeutic targets. Contrary to apoptosis, regulated necrosis may be extremely pro-inflammatory and, importantly for kidney transplantation, immunogenic. Furthermore, regulated necrosis may trigger synchronized necrosis, in which all cells within a given tubule die in a synchronized manner. We now review the different modalities of regulated necrosis, the evidence for a role in diverse forms of kidney injury and the new opportunities for therapeutic intervention.
Nephrology Dialysis Transplantation | 2018
Miguel Fontecha-Barriuso; Diego Martin-Sanchez; Olga Ruiz-Andres; Jonay Poveda; Maria Dolores Sanchez-Niño; Lara Valiño-Rivas; Marta Ruiz-Ortega; Alberto Ortiz; Ana Belen Sanz
Epigenetics refers to heritable changes in gene expression patterns not caused by an altered nucleotide sequence, and includes non-coding RNAs and covalent modifications of DNA and histones. This review focuses on functional evidence for the involvement of DNA and histone epigenetic modifications in the pathogenesis of kidney disease and the potential therapeutic implications. There is evidence of activation of epigenetic regulatory mechanisms in acute kidney injury (AKI), chronic kidney disease (CKD) and the AKI-to-CKD transition of diverse aetiologies, including ischaemia-reperfusion injury, nephrotoxicity, ureteral obstruction, diabetes, glomerulonephritis and polycystic kidney disease. A beneficial in vivo effect over preclinical kidney injury has been reported for drugs that decrease DNA methylation by either inhibiting DNA methylation (e.g. 5-azacytidine and decitabine) or activating DNA demethylation (e.g. hydralazine), decrease histone methylation by inhibiting histone methyltransferases, increase histone acetylation by inhibiting histone deacetylases (HDACs, e.g. valproic acid, vorinostat, entinostat), increase histone crotonylation (crotonate) or interfere with histone modification readers [e.g. inhibits of bromodomain and extra-terminal proteins (BET)]. Most preclinical studies addressed CKD or the AKI-to-CKD transition. Crotonate administration protected from nephrotoxic AKI, but evidence is conflicting on DNA methylation inhibitors for preclinical AKI. Several drugs targeting epigenetic regulators are in clinical development or use, most of them for malignancy. The BET inhibitor apabetalone is in Phase 3 trials for atherosclerosis, kidney function being a secondary endpoint, but nephrotoxicity was reported for DNA and HDAC inhibitors. While research into epigenetic modulators may provide novel therapies for kidney disease, caution should be exercised based on the clinical nephrotoxicity of some drugs.
Nephrology Dialysis Transplantation | 2016
Olga Ruiz-Andres; Maria Dolores Sanchez-Niño; Pablo Cannata-Ortiz; Marta Ruiz-Ortega; Jesus Ejido; Ana Belen Sanz; Alberto Ortiz Arduan
Acute kidney injury (AKI) is a potentially lethal condition for which no therapy is available beyond replacement of renal function. Post-translational histone modifications modulate gene expression and kidney injury. Histone crotonylation is a recently described post-translational modification. We hypothesized that histone crotonylation may modulate kidney injury. Histone crotonylation was studied in cultured murine proximal tubular cells and in kidneys from mice with AKI induced by folic acid or cisplatin. Histone lysine-crotonylation was observed in tubular cells from healthy murine and human kidney tissue. Kidney tissue histone crotonylation increased during AKI. This was reproduced by exposure to TWEAK in cultured tubular cells. Specifically, ChIP-seq disclosed enrichment of histone crotonylation at the genes encoding the mitochondrial biogenesis regulator PGC-1α and the sirtuin-3 decrotonylase in both TWEAK-stimulated tubular cells and in AKI kidney tissue. To assess the role of crotonylation in kidney injury, crotonate was used to increase histone crotonylation in cultured tubular cells or in the kidneys in vivo. Crotonate increased the expression of PGC-1α and sirtuin-3, and decreased CCL2 expression in cultured tubular cells and healthy kidneys. Systemic crotonate administration protected from experimental AKI, preventing the decrease in renal function and in kidney PGC-1α and sirtuin-3 levels as well as the increase in CCL2 expression. For the first time we have