Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olga Sosnovtseva is active.

Publication


Featured researches published by Olga Sosnovtseva.


Journal of Biological Physics | 2009

Dynamical patterns of calcium signaling in a functional model of neuron–astrocyte networks

D. E. Postnov; R. N. Koreshkov; N. A. Brazhe; Alexey R. Brazhe; Olga Sosnovtseva

We propose a functional mathematical model for neuron-astrocyte networks. The model incorporates elements of the tripartite synapse and the spatial branching structure of coupled astrocytes. We consider glutamate-induced calcium signaling as a specific mode of excitability and transmission in astrocytic–neuronal networks. We reproduce local and global dynamical patterns observed experimentally.


Chaos | 2001

Synchronization phenomena in nephron–nephron interaction

Niels-Henrik Holstein-Rathlou; Kay-Pong Yip; Olga Sosnovtseva; Erik Mosekilde

Experimental data for tubular pressure oscillations in rat kidneys are analyzed in order to examine the different types of synchronization that can arise between neighboring functional units. For rats with normal blood pressure, the individual unit (the nephron) typically exhibits regular oscillations in its tubular pressure and flow variations. For such rats, both in-phase and antiphase synchronization can be demonstrated in the experimental data. For spontaneously hypertensive rats, where the pressure variations in the individual nephrons are highly irregular, signs of chaotic phase and frequency synchronization can be observed. Accounting for a hemodynamic as well as for a vascular coupling between nephrons that share a common interlobular artery, we develop a mathematical model of the pressure and flow regulation in a pair of adjacent nephrons. We show that this model, for appropriate values of the parameters, can reproduce the different types of experimentally observed synchronization. (c) 2001 American Institute of Physics.


Biophysical Journal | 2009

New Insight into Erythrocyte through In Vivo Surface-Enhanced Raman Spectroscopy

N. A. Brazhe; Salim Abdali; Alexey R. Brazhe; O. G. Luneva; Nadezda Y. Bryzgalova; Eugenia Y. Parshina; Olga Sosnovtseva; G. V. Maksimov

The article presents a noninvasive approach to the study of erythrocyte properties by means of a comparative analysis of signals obtained by surface-enhanced Raman spectroscopy (SERS) and resonance Raman spectroscopy (RS). We report step-by-step the procedure for preparing experimental samples containing erythrocytes in their normal physiological environment in a mixture of colloid solution with silver nanoparticles and the procedure for the optimization of SERS conditions to achieve high signal enhancement without affecting the properties of living erythrocytes. By means of three independent techniques, we demonstrate that under the proposed conditions a colloid solution of silver nanoparticles does not affect the properties of erythrocytes. For the first time to our knowledge, we describe how to use the SERS-RS approach to study two populations of hemoglobin molecules inside an intact living erythrocyte: submembrane and cytosolic hemoglobin (Hb(sm) and Hb(c)). We show that the conformation of Hb(sm) differs from the conformation of Hb(c). This finding has an important application, as the comparative study of Hb(sm) and Hb(c) could be successfully used in biomedical research and diagnostic tests.


BioSystems | 2007

Functional modeling of neural-glial interaction.

D. E. Postnov; Ludmila S. Ryazanova; Olga Sosnovtseva

We propose a generalized mathematical model for a small neural-glial ensemble. The model incorporates subunits of the tripartite synapse that includes a presynaptic neuron, the synaptic terminal itself, a postsynaptic neuron, and a glial cell. The glial cell is assumed to be activated via two different pathways: (i) the fast increase of intercellular [K(+)] produced by the spiking activity of the postsynaptic neuron, and (ii) the slow production of a mediator triggered by the synaptic activity. Our model predicts the long-term potentiation of the postsynaptic neuron as well as various [Ca(2+)] transients in response to the activation of different pathways.


Chaos | 2007

Vascular coupling induces synchronization, quasiperiodicity, and chaos in a nephron tree

Donald J. Marsh; Olga Sosnovtseva; Erik Mosekilde; Niels-Henrik Holstein-Rathlou

The paper presents a study of synchronization phenomena in a system of 22 nephrons supplied with blood from a common cortical radial artery. The nephrons are assumed to interact via hemodynamic and vascularly propagated coupling, both mediated by vascular connections. Using anatomic and physiological criteria, the nephrons are divided into groups: cortical nephrons and medullary nephrons with short, intermediate and long Henle loops. Within each of these groups the delay parameters of the internal feedback regulation are given a random component to represent the internephron variability. For parameters that generate simple limit cycle dynamics in the pressure and flow regulation of single nephrons, the ensemble of coupled nephrons showed steady state, quasiperiodic or chaotic dynamics, depending on the interaction strengths and the arterial blood pressure. When the solutions were either quasiperiodic or chaotic, cortical nephrons synchronized to a single frequency, but the longer medullary nephrons formed two clusters with different frequencies. Under no physiologically realistic combination of parameters did all nephrons assume a common frequency. Our results suggest a greater variability in the nephron dynamics than is apparent from measurements performed on cortical nephrons only. This variability may explain the development of chaotic dynamics in tubular pressure records from hypertensive rats.


American Journal of Physiology-renal Physiology | 2011

Nephron blood flow dynamics measured by laser speckle contrast imaging

Niels-Henrik Holstein-Rathlou; Olga Sosnovtseva; Alexey N. Pavlov; William A. Cupples; Charlotte Mehlin Sorensen; Donald J. Marsh

Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubular pressure and flow. Nephrons interact by exchanging electrical signals conducted electrotonically through cells of the vascular wall, leading to synchronization of the TGF-mediated oscillations. Experimental studies of these interactions have been limited to observations on two or at most three nephrons simultaneously. The interacting nephron fields are likely to be more extensive. We have turned to laser speckle contrast imaging to measure the blood flow dynamics of 50-100 nephrons simultaneously on the renal surface of anesthetized rats. We report the application of this method and describe analytic techniques for extracting the desired data and for examining them for evidence of nephron synchronization. Synchronized TGF oscillations were detected in pairs or triplets of nephrons. The amplitude and the frequency of the oscillations changed with time, as did the patterns of synchronization. Synchronization may take place among nephrons not immediately adjacent on the surface of the kidney.


American Journal of Physiology-renal Physiology | 2009

Electrotonic vascular signal conduction and nephron synchronization

Donald J. Marsh; Ildiko Toma; Olga Sosnovtseva; Janos Peti-Peterdi; Niels-Henrik Holstein-Rathlou

Tubuloglomerular feedback (TGF) and the myogenic mechanism control afferent arteriolar diameter in each nephron and regulate blood flow. Both mechanisms generate self-sustained oscillations, the oscillations interact, TGF modulates the frequency and amplitude of the myogenic oscillation, and the oscillations synchronize; a 5:1 frequency ratio is the most frequent. TGF oscillations synchronize in nephron pairs supplied from a common cortical radial artery, as do myogenic oscillations. We propose that electrotonic vascular signal propagation from one juxtaglomerular apparatus interacts with similar signals from other nephrons to produce synchronization. We tested this idea in tubular-vascular preparations from mice. Vascular smooth muscle cells were loaded with a fluorescent voltage-sensitive dye; fluorescence intensity was measured with confocal microscopy. Perfusion of the thick ascending limb activated TGF and depolarized afferent arteriolar smooth muscle cells. The depolarization spread to the cortical radial artery and other afferent arterioles and declined with distance from the perfused juxtaglomerular apparatus, consistent with electrotonic vascular signal propagation. With a mathematical model of two coupled nephrons, we estimated the conductance of nephron coupling by fitting simulated vessel diameters to experimental data. With this value, we simulated nephron pairs to test for synchronization. In single-nephron simulations, the frequency of the TGF oscillation varied with nephron length. Coupling nephrons of different lengths forced TGF frequencies of both pair members to converge to a common value. The myogenic oscillations also synchronized, and the synchronization between the TGF and the myogenic oscillations showed an increased stability against parameter perturbations. Electronic vascular signal propagation is a plausible mechanism for nephron synchronization. Coupling increased the stability of the various oscillations.


PLOS ONE | 2012

Mapping of Redox State of Mitochondrial Cytochromes in Live Cardiomyocytes Using Raman Microspectroscopy

N. A. Brazhe; Marek Treiman; Alexey R. Brazhe; G. V. Maksimov; Olga Sosnovtseva

This paper presents a nonivasive approach to study redox state of reduced cytochromes , and of complexes II and III in mitochondria of live cardiomyocytes by means of Raman microspectroscopy. For the first time with the proposed approach we perform studies of rod- and round-shaped cardiomyocytes, representing different morphological and functional states. Raman mapping and cluster analysis reveal that these cardiomyocytes differ in the amounts of reduced cytochromes , and . The rod-shaped cardiomyocytes possess uneven distribution of reduced cytochromes , and in cell center and periphery. Moreover, by means of Raman spectroscopy we demonstrated the decrease in the relative amounts of reduced cytochromes , and in the rod-shaped cardiomyocytes caused by H2O2-induced oxidative stress before any visible changes. Results of Raman mapping and time-dependent study of reduced cytochromes of complexes II and III and cytochrome in cardiomyocytes are in a good agreement with our fluorescence indicator studies and other published data.


Journal of Materials Chemistry | 2012

Planar SERS nanostructures with stochastic silver ring morphology for biosensor chips

Anna A. Semenova; Eugene A. Goodilin; N. A. Brazhe; V. K. Ivanov; A. E. Baranchikov; Vasiliy A. Lebedev; Anastasia E. Goldt; Olga Sosnovtseva; Sergey V. Savilov; A. V. Egorov; Alexey R. Brazhe; E.Y. Parshina; Oxana G. Luneva; G. V. Maksimov; Yury D. Tretyakov

Surface-enhanced Raman spectroscopy (SERS) of living cells has rapidly become a powerful trend in biomedical diagnostics. It is a common belief that highly ordered, artificially engineered substrates are the best future decision in this field. This paper, however, describes an alternative successful solution, a new effortless chemical approach to the design of nanostructured silver and heterometallic continuous coatings with a stochastic “coffee ring” morphology. The coatings are formed from an ultrasonic mist of aqueous diamminesilver hydroxide, free of reducing agents and nonvolatile pollutants, under mild conditions, at about 200–270 °C in air. They consist of 30–100 micrometer wide and 100–400 nm high silver rings composed, in turn, of a porous silver matrix with 10–50 nm silver grains decorating the sponge. This hierarchic structure originates from ultrasonic droplet evaporation, contact-line motion, silver(I) oxide decomposition and evolution of a growing ensemble of silver rings. The fabricated substrates are a remarkable example of a new scalable and low cost material suitable for SERS analyses of living cells. They evoke no hemolysis and reduce erythrocyte lateral mobility due to suitable “coffee ring” sizes and a tight contact with the silver nanostructure. A high SERS enhancement, characteristic of pure silver rings, made it possible to record Raman scattering spectra from submembrane hemoglobin in its natural cellular environment inside single living erythrocytes, thus making the substrates promising for various biosensor chips.


Scientific Reports | 2015

Probing cytochrome c in living mitochondria with surface-enhanced Raman spectroscopy

N. A. Brazhe; Andrey B. Evlyukhin; Eugene A. Goodilin; Anna A. Semenova; Sergey M. Novikov; Sergey I. Bozhevolnyi; Boris N. Chichkov; Asya S. Sarycheva; A. A. Baizhumanov; Evelina I. Nikelshparg; Leonid I. Deev; Eugene G. Maksimov; G. V. Maksimov; Olga Sosnovtseva

Selective study of the electron transport chain components in living mitochondria is essential for fundamental biophysical research and for the development of new medical diagnostic methods. However, many important details of inter- and intramembrane mitochondrial processes have remained in shadow due to the lack of non-invasive techniques. Here we suggest a novel label-free approach based on the surface-enhanced Raman spectroscopy (SERS) to monitor the redox state and conformation of cytochrome c in the electron transport chain in living mitochondria. We demonstrate that SERS spectra of living mitochondria placed on hierarchically structured silver-ring substrates provide exclusive information about cytochrome c behavior under modulation of inner mitochondrial membrane potential, proton gradient and the activity of ATP-synthetase. Mathematical simulation explains the observed enhancement of Raman scattering due to high concentration of electric near-field and large contact area between mitochondria and nanostructured surfaces.

Collaboration


Dive into the Olga Sosnovtseva's collaboration.

Top Co-Authors

Avatar

Erik Mosekilde

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

D. E. Postnov

Saratov State University

View shared research outputs
Top Co-Authors

Avatar

N. A. Brazhe

Moscow State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donald J. Marsh

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Alexey N. Pavlov

Saratov State Technical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge