Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olga T. Schubert is active.

Publication


Featured researches published by Olga T. Schubert.


Nature Biotechnology | 2014

OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data.

Hannes L. Röst; George Rosenberger; Pedro Navarro; Ludovic C. Gillet; Saša M Miladinović; Olga T. Schubert; Witold Wolski; Ben C. Collins; Johan Malmström; Lars Malmström; Ruedi Aebersold

Hannes L. Rost, 2, ∗ George Rosenberger, 2, ∗ Pedro Navarro, Ludovic Gillet, Sasa M. Miladinovic, 3 Olga T. Schubert, 2 Witold Wolski, Ben C. Collins, Johan Malmstrom, Lars Malmstrom, and Ruedi Aebersold 6, 7, † Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, CH-8093 Zurich, Switzerland Ph.D. Program in Systems Biology, University of Zurich and ETH Zurich, CH-8057 Zurich, Switzerland Biognosys AG, CH-8952 Schlieren, Switzerland SyBIT project of SystemsX.ch, ETH Zurich, CH-8092 Zurich, Switzerland Department of Immunotechnology, Lund University, S-22100 Lund, Sweden Competence Center for Systems Physiology and Metabolic Diseases, CH-8093 Zurich, Switzerland Faculty of Science, University of Zurich, CH-8057 Zurich, Switzerland (Dated: October 19, 2015)


Cell Reports | 2013

Genome-wide Mapping of Transcriptional Start Sites Defines an Extensive Leaderless Transcriptome in Mycobacterium tuberculosis

Teresa Cortes; Olga T. Schubert; Graham Rose; Kristine B. Arnvig; Iñaki Comas; Ruedi Aebersold; Douglas B. Young

Summary Deciphering physiological changes that mediate transition of Mycobacterium tuberculosis between replicating and nonreplicating states is essential to understanding how the pathogen can persist in an individual host for decades. We have combined RNA sequencing (RNA-seq) of 5′ triphosphate-enriched libraries with regular RNA-seq to characterize the architecture and expression of M. tuberculosis promoters. We identified over 4,000 transcriptional start sites (TSSs). Strikingly, for 26% of the genes with a primary TSS, the site of transcriptional initiation overlapped with the annotated start codon, generating leaderless transcripts lacking a 5′ UTR and, hence, the Shine-Dalgarno sequence commonly used to initiate ribosomal engagement in eubacteria. Genes encoding proteins with active growth functions were markedly depleted from the leaderless transcriptome, and there was a significant increase in the overall representation of leaderless mRNAs in a starvation model of growth arrest. The high percentage of leaderless genes may have particular importance in the physiology of nonreplicating M. tuberculosis.


Scientific Data | 2014

A repository of assays to quantify 10,000 human proteins by SWATH-MS

George Rosenberger; Ching Chiek Koh; Tiannan Guo; Hannes L. Röst; Petri Kouvonen; Ben C. Collins; Moritz Heusel; Yansheng Liu; Etienne Caron; Anton Vichalkovski; Marco Faini; Olga T. Schubert; Pouya Faridi; H. Alexander Ebhardt; Mariette Matondo; Henry H N Lam; Samuel L. Bader; David S. Campbell; Eric W. Deutsch; Robert L. Moritz; Stephen Tate; Ruedi Aebersold

Mass spectrometry is the method of choice for deep and reliable exploration of the (human) proteome. Targeted mass spectrometry reliably detects and quantifies pre-determined sets of proteins in a complex biological matrix and is used in studies that rely on the quantitatively accurate and reproducible measurement of proteins across multiple samples. It requires the one-time, a priori generation of a specific measurement assay for each targeted protein. SWATH-MS is a mass spectrometric method that combines data-independent acquisition (DIA) and targeted data analysis and vastly extends the throughput of proteins that can be targeted in a sample compared to selected reaction monitoring (SRM). Here we present a compendium of highly specific assays covering more than 10,000 human proteins and enabling their targeted analysis in SWATH-MS datasets acquired from research or clinical specimens. This resource supports the confident detection and quantification of 50.9% of all human proteins annotated by UniProtKB/Swiss-Prot and is therefore expected to find wide application in basic and clinical research. Data are available via ProteomeXchange (PXD000953-954) and SWATHAtlas (SAL00016-35).


Proceedings of the National Academy of Sciences of the United States of America | 2011

Cancer genetics-guided discovery of serum biomarker signatures for diagnosis and prognosis of prostate cancer

Igor Cima; Ralph Schiess; Peter Wild; Martin Kaelin; Peter J. Schüffler; Vinzenz Lange; Paola Picotti; Reto Ossola; Arnoud J. Templeton; Olga T. Schubert; Thomas J. Fuchs; Thomas Leippold; Stephen Wyler; Jens Zehetner; Wolfram Jochum; Joachim M. Buhmann; Thomas Cerny; Holger Moch; Silke Gillessen; Ruedi Aebersold; Wilhelm Krek

A key barrier to the realization of personalized medicine for cancer is the identification of biomarkers. Here we describe a two-stage strategy for the discovery of serum biomarker signatures corresponding to specific cancer-causing mutations and its application to prostate cancer (PCa) in the context of the commonly occurring phosphatase and tensin homolog (PTEN) tumor-suppressor gene inactivation. In the first stage of our approach, we identified 775 N-linked glycoproteins from sera and prostate tissue of wild-type and Pten-null mice. Using label-free quantitative proteomics, we showed that Pten inactivation leads to measurable perturbations in the murine prostate and serum glycoproteome. Following bioinformatic prioritization, in a second stage we applied targeted proteomics to detect and quantify 39 human ortholog candidate biomarkers in the sera of PCa patients and control individuals. The resulting proteomic profiles were analyzed by machine learning to build predictive regression models for tissue PTEN status and diagnosis and grading of PCa. Our approach suggests a general path to rational cancer biomarker discovery and initial validation guided by cancer genetics and based on the integration of experimental mouse models, proteomics-based technologies, and computational modeling.


Cell Host & Microbe | 2013

The Mtb Proteome Library: A Resource of Assays to Quantify the Complete Proteome of Mycobacterium tuberculosis

Olga T. Schubert; Jeppe Mouritsen; Christina Ludwig; Hannes L. Röst; George Rosenberger; Patrick K. Arthur; Manfred Claassen; David S. Campbell; Zhi Sun; Terry Farrah; Martin Gengenbacher; Alessio Maiolica; Stefan H. E. Kaufmann; Robert L. Moritz; Ruedi Aebersold

Research advancing our understanding of Mycobacterium tuberculosis (Mtb) biology and complex host-Mtb interactions requires consistent and precise quantitative measurements of Mtb proteins. We describe the generation and validation of a compendium of assays to quantify 97% of the 4,012 annotated Mtb proteins by the targeted mass spectrometric method selected reaction monitoring (SRM). Furthermore, we estimate the absolute abundance for 55% of all Mtb proteins, revealing a dynamic range within the Mtb proteome of over four orders of magnitude, and identify previously unannotated proteins. As an example of the assay library utility, we monitored the entire Mtb dormancy survival regulon (DosR), which is linked to anaerobic survival and Mtb persistence, and show its dynamic protein-level regulation during hypoxia. In conclusion, we present a publicly available research resource that supports the sensitive, precise, and reproducible quantification of virtually any Mtb protein by a robust and widely accessible mass spectrometric method.


Nature Protocols | 2015

Building high-quality assay libraries for targeted analysis of SWATH MS data.

Olga T. Schubert; Ludovic C. Gillet; Ben C. Collins; Pedro Navarro; George Rosenberger; Witold Wolski; Henry H N Lam; Dario Amodei; Parag Mallick; Brendan MacLean; Ruedi Aebersold

Targeted proteomics by selected/multiple reaction monitoring (S/MRM) or, on a larger scale, by SWATH (sequential window acquisition of all theoretical spectra) MS (mass spectrometry) typically relies on spectral reference libraries for peptide identification. Quality and coverage of these libraries are therefore of crucial importance for the performance of the methods. Here we present a detailed protocol that has been successfully used to build high-quality, extensive reference libraries supporting targeted proteomics by SWATH MS. We describe each step of the process, including data acquisition by discovery proteomics, assertion of peptide-spectrum matches (PSMs), generation of consensus spectra and compilation of MS coordinates that uniquely define each targeted peptide. Crucial steps such as false discovery rate (FDR) control, retention time normalization and handling of post-translationally modified peptides are detailed. Finally, we show how to use the library to extract SWATH data with the open-source software Skyline. The protocol takes 2–3 d to complete, depending on the extent of the library and the computational resources available.


Cell Host & Microbe | 2015

Absolute Proteome Composition and Dynamics during Dormancy and Resuscitation of Mycobacterium tuberculosis

Olga T. Schubert; Christina Ludwig; Maria Kogadeeva; Michael B. Zimmermann; George Rosenberger; Martin Gengenbacher; Ludovic C. Gillet; Ben C. Collins; Hannes L. Röst; Stefan H. E. Kaufmann; Uwe Sauer; Ruedi Aebersold

Mycobacterium tuberculosis remains a health concern due to its ability to enter a non-replicative dormant state linked to drug resistance. Understanding transitions into and out of dormancy will inform therapeutic strategies. We implemented a universally applicable, label-free approach to estimate absolute cellular protein concentrations on a proteome-wide scale based on SWATH mass spectrometry. We applied this approach to examine proteomic reorganization of M. tuberculosis during exponential growth, hypoxia-induced dormancy, and resuscitation. The resulting data set covering >2,000 proteins reveals how protein biomass is distributed among cellular functions during these states. The stress-induced DosR regulon contributes 20% to cellular protein content during dormancy, whereas ribosomal proteins remain largely unchanged at 5%-7%. Absolute protein concentrations furthermore allow protein alterations to be translated into changes in maximal enzymatic reaction velocities, enhancing understanding of metabolic adaptations. Thus, global absolute protein measurements provide a quantitative description of microbial states, which can support the development of therapeutic interventions.


eLife | 2014

A RanGTP-independent mechanism allows ribosomal protein nuclear import for ribosome assembly

Sabina Schütz; Ute Fischer; Martin Altvater; Purnima Nerurkar; Cohue Peña; Michaela Gerber; Yiming Chang; Stefanie Caesar; Olga T. Schubert; Gabriel Schlenstedt; Vikram Govind Panse

Within a single generation time a growing yeast cell imports ∼14 million ribosomal proteins (r-proteins) into the nucleus for ribosome production. After import, it is unclear how these intrinsically unstable and aggregation-prone proteins are targeted to the ribosome assembly site in the nucleolus. Here, we report the discovery of a conserved nuclear carrier Tsr2 that coordinates transfer of the r-protein eS26 to the earliest assembling pre-ribosome, the 90S. In vitro studies revealed that Tsr2 efficiently dissociates importin:eS26 complexes via an atypical RanGTP-independent mechanism that terminates the import process. Subsequently, Tsr2 binds the released eS26, shields it from proteolysis, and ensures its safe delivery to the 90S pre-ribosome. We anticipate similar carriers—termed here escortins—to securely connect the nuclear import machinery with pathways that deposit r-proteins onto developing pre-ribosomal particles. DOI: http://dx.doi.org/10.7554/eLife.03473.001


PLOS ONE | 2013

A Small RNA Encoded in the Rv2660c Locus of Mycobacterium tuberculosis Is Induced during Starvation and Infection

Joanna Houghton; Teresa Cortes; Olga T. Schubert; Graham Rose; Angela Rodgers; Megan De Ste Croix; Rudolf Aebersold; Douglas B. Young; Kristine B. Arnvig

Enhanced transcription of the Rv2660c locus in response to starvation of Mycobacterium tuberculosis H37Rv encouraged addition of the predicted Rv2660c protein to an improved vaccine formulation. Using strand-specific RNA sequencing, we show that the up-regulated transcript is in fact a small RNA encoded on the opposite strand to the annotated Rv2660c. The transcript originates within a prophage and is expressed only in strains that carry PhiRv2. The small RNA contains both host and phage sequences and provides a useful biomarker to monitor bacterial starvation during infection and/or non-replicating persistence. Using different approaches we do not find any evidence of Rv2660c at the level of mRNA or protein. Further efforts to understand the mechanism by which Rv2660c improves efficacy of the H56 vaccine are likely to provide insights into the pathology and immunology of tuberculosis.


Nature Protocols | 2017

Quantitative proteomics: challenges and opportunities in basic and applied research

Olga T. Schubert; Hannes L. Röst; Ben C. Collins; George Rosenberger; Ruedi Aebersold

In this Perspective, we discuss developments in mass-spectrometry-based proteomic technology over the past decade from the viewpoint of our laboratory. We also reflect on existing challenges and limitations, and explore the current and future roles of quantitative proteomics in molecular systems biology, clinical research and personalized medicine.

Collaboration


Dive into the Olga T. Schubert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge