Olga Tsigkou
Imperial College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olga Tsigkou.
Biomaterials | 2009
Olga Tsigkou; Julian R. Jones; Julia M. Polak; Molly M. Stevens
Bioactive glasses bond strongly to bone in vivo and their ionic dissolution products have previously been shown to have stimulatory properties on adult and fetal osteoblasts and to induce the differentiation of embryonic stem cells towards the osteoblastic lineage in vitro. In the present study, the effect of 45S5 Bioglass conditioned medium with two different Si concentrations (15 microg/ml (BGCM/15) and 20 microg/ml (BGCM/20)) on human fetal osteoblast growth, differentiation and extracellular matrix production and mineralization was investigated. In the first instance, primary fetal osteoblasts were examined for the osteoblast phenotypic markers alkaline phosphatase (ALP), collagen type I (Col I) and OB Cadherin (Cadherin 11) (OB Cad) as well as for the mesenchymal stem cell markers CD105 and CD166. At passage 0 more than 50% of the population was positive for Col I and ALP, but at passage 2, the proportion of cells expressing ALP increased. In addition at passage 0 more than 50% of the fetal osteoblasts expressed the mesenchymal stem cell surface markers CD105 and CD166. Treatment with BGCM/15 and BGCM/20 in the absence of osteogenic supplements increased the gene expression of the bone extracellular matrix proteins alkaline phosphatase, osteonectin and bone sialoprotein as determined by quantitative real time reverse transcriptase-polymerase chain reaction (rt RT-PCR) analysis. Extracellular matrix production was also enhanced in the absence of osteogenic supplements by the 45S5 Bioglass conditioned medium as demonstrated by ALP enzymatic activity, osteocalcin and Col I protein synthesis. Furthermore, BGCM/15 and BGCM/20 significantly enhanced the formation of mineralized nodules, based on alizarin red histochemical staining, without necessitating the addition of beta-glycerophosphate, l-ascorbate-2-phosphate or dexamethasone (commonly used osteogenic supplements).
Biomaterials | 2011
Sheyda Labbaf; Olga Tsigkou; Karin H. Müller; Molly M. Stevens; Alexandra E. Porter; Julian R. Jones
Sub-micron particles of bioactive glass (SMBGs) with composition 85 mol% SiO(2) and 15 mol% CaO were synthesised and characterised. Bioactivity was demonstrated by the formation of calcium apatite following 5 days immersion in simulated body fluid (SBF). The effect of a 24 h exposure of SMBGs (100 μg/ml, 150 μg/ml, 200 μg/ml) to human mesenchymal stem cells (hMSCs) on cell viability, metabolic activity and proliferation were determined using the LIVE/DEAD, MTT, total DNA and LDH assays after 1, 4 and 7 days of culture. None of the SMBG concentrations caused significant cytotoxicity at 1 and 4 days, but the doses of 150 and 200 μg/ml significantly decreased hMSC metabolic activity after 7 days of culture. Cell proliferation decreased as SMBG concentration increased; however none of the SMBGs tested had a significant effect on DNA quantity compared to the control. Confocal microscopy confirmed cellular uptake and localisation of the SMBGs in the hMSC cytoskeleton. Transmission electron microscopy revealed that the SMBGs localised inside the cell cytoplasm and cell endosomes. These findings are important for assessing the toxicity of sub-micron particles that may either be used as injectables for bone regeneration or generated by wear or degradation of bioactive glass scaffolds.
Journal of Materials Chemistry | 2010
Ajay S. Karakoti; Olga Tsigkou; Sheng Yue; Peter D. Lee; Molly M. Stevens; Julian R. Jones; Sudipta Seal
Nanocomposite scaffolds of bioactive glass foams containing tailor made rare earth oxide (i.e. nanoceria) additives were demonstrated to enhance the production of collagen by HMSCs (Human Mesenchymal Stem Cells) compared to bioactive glass scaffolds without nanoceria. The addition of osteogenic supplements was not required for this to occur. Two different preparations of nanoceria were successfully incorporated in 3-D bioactive glass foam scaffolds and were compared with bioactive scaffolds without nanoceria. The nanoparticles had individual particle sizes of 3–5 nm while the agglomerate size varied from 5–15 nm. Preliminary investigations show that nanoceria is non toxic to the cells. After 10 days of culture, nanoceria containing scaffolds showed enhanced osteoblastic differentiation of HMSCs and collagen production compared to the scaffolds without nanoceria even in the absence of any osteogenic supplements (i.e. ascorbic acid, dexamethasone and β-glycerophosphate). This could be due to the incorporation of nanoceria, which acts as an oxygen buffer thereby regulating the differentiation of HMSCs. Further investigations are currently underway to determine the role of the nanoceria controlled oxygen buffering on the HMSC differentiation.
Advanced Healthcare Materials | 2014
Olga Tsigkou; Sheyda Labbaf; Molly M. Stevens; Alexandra E. Porter; Julian R. Jones
Spherical monodispersed bioactive particles are potential candidates for nanocomposite synthesis or as injectable particles that could be internalized by cells for the local sustained delivery of inorganic therapeutic ions (e.g., calcium or strontium). Particles are also likely to be released from porous bioactive glass and sol-gel hybrid scaffolds as they degrade; thus, it is vital to investigate their interaction with cells. Spherical monodispersed bioactive glass particles (mono-SMBG), with diameters of 215 ± 20 nm are synthesized using a modified Stöber process. Confocal and transmission electron microscopy demonstrate that mono-SMBGs are internalized by human bone marrow (MSCs) and adipose-derived stem cells (ADSCs) and located within cell vesicles and in the cytoplasm. Particle dissolution inside the cells is observed. Alamar Blue, MTT and Cyquant assays demonstrate that 50 μg mL(-1) of mono-SMBGs did not inhibit significantly MSC or ADSC metabolic activity. However, at higher concentrations (100 and 200 μg mL(-1)) small decrease in metabolic activity and total DNA is observed. Mono-SMBG did not induce ALPase activity, an early marker of osteogenic differentiation, without osteogenic supplements; however, in their presence osteogenic differentiation is achieved. Additionally, large numbers of particles are internalized by the cells but have little effect on cell behavior.
Chemistry: A European Journal | 2014
Gowsihan Poologasundarampillai; Bobo Yu; Olga Tsigkou; Daming Wang; Frederik Romer; Vineet Bhakhri; Finn Giuliani; Molly M. Stevens; David S. McPhail; Mark E. Smith; John V. Hanna; Julian R. Jones
Current materials used for bone regeneration are usually bioactive ceramics or glasses. Although they bond to bone, they are brittle. There is a need for new materials that can combine bioactivity with toughness and controlled biodegradation. Sol-gel hybrids have the potential to do this through their nanoscale interpenetrating networks (IPN) of inorganic and organic components. Poly(γ-glutamic acid) (γ-PGA) was introduced into the sol-gel process to produce a hybrid of γ-PGA and bioactive silica. Calcium is an important element for bone regeneration but calcium sources that are used traditionally in the sol-gel process, such as Ca salts, do not allow Ca incorporation into the silicate network during low-temperature processing. The hypothesis for this study was that using calcium methoxyethoxide (CME) as the Ca source would allow Ca incorporation into the silicate component of the hybrid at room temperature. The produced hybrids would have improved mechanical properties and controlled degradation compared with hybrids of calcium chloride (CaCl2), in which the Ca is not incorporated into the silicate network. Class II hybrids, with covalent bonds between the inorganic and organic species, were synthesised by using organosilane. Calcium incorporation in both the organic and inorganic IPNs of the hybrid was improved when CME was used. This was clearly observed by using FTIR and solid-state NMR spectroscopy, which showed ionic cross-linking of γ-PGA by Ca and a lower degree of condensation of the Si species compared with the hybrids made with CaCl2 as the Ca source. The ionic cross-linking of γ-PGA by Ca resulted in excellent compressive strength and reduced elastic modulus as measured by compressive testing and nanoindentation, respectively. All hybrids showed bioactivity as hydroxyapatite (HA) was formed after immersion in simulated body fluid (SBF).
Tissue Engineering Part A | 2015
Maria M. Azevedo; Olga Tsigkou; Rekha Nair; Julian R. Jones; Gavin Jell; Molly M. Stevens
Oxygen tension is a known regulator of mesenchymal stem cell (MSC) plasticity, differentiation, proliferation, and recruitment to sites of injury. Materials capable of affecting the MSC oxygen-sensing pathway, independently of the environmental oxygen pressure, are therefore of immense interest to the tissue engineering (TE) and regenerative medicine community. In this study, we describe the evaluation of the effect of hypoxia inducible factor (HIF)-stabilizing bioactive glasses (BGs) on human MSCs. The dissolution products from these hypoxia-mimicking BGs stabilized HIF-1α in a concentration-dependent manner, altered cell proliferation and metabolism, and upregulated a number of genes involved in the hypoxic response (HIF1A, HIF2A, and VHL), MSC survival (SAG and BCL2), extracellular matrix remodeling (MMP1), and angiogenesis (VEGF and PDGF). These HIF-stabilizing materials can therefore be used to improve MSC survival and enhance regeneration in a number of TE strategies.
Frontiers in Materials | 2017
Jekaterina Maksimcuka; Akiko Obata; W. W. Sampson; Remi Blanc; Chunxia Gao; Philip J. Withers; Olga Tsigkou; Toshihiro Kasuga; Peter D. Lee; Gowsihan Poologasundarampillai
Electrospinning allows the production of fibrous networks for tissue engineering, drug delivery and wound healing in healthcare. It enables the production of constructs with large surface area and a fibrous morphology that closely resembles the extracellular matrix of many tissues. A fibrous structure not only promotes cell attachment and tissue formation, but could also lead to very interesting mechanical properties. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-co-4HB)) is a biodegradable polyester that exhibits large (>400%) elongation before failure. In this study, synchrotron X-ray phase contrast imaging was performed during tensile deformation to failure on a non-woven fibre mat of P(3HB-co-4HB) fibres. Significant reorientation of the fibres in straining direction was observed, followed by localised necking and eventual failure. From an original average fibre diameter of 4.3 μm a bimodal distribution of fibre diameter (modal diameters of 1.9 and 3.7 μm) formed after tensile deformation. Extensive localised necking (thinning) of fibres between (thicker) fibre-fibre contacts was found to be the cause for non-uniform thinning of the fibres, a phenomenon that is expected, but has not been observed in 3D previously. The data presented here has implications not only in tissue regeneration but for fibrous materials in general.
Biomaterials | 2007
Julian R. Jones; Olga Tsigkou; Emily E. Coates; Molly M. Stevens; Julia M. Polak; Larry L. Hench
Advanced Functional Materials | 2010
Oliver Mahony; Olga Tsigkou; Claudia Ionescu; Caterina Minelli; Lowell Ling; Ruth Hanly; Mark E. Smith; Molly M. Stevens; Julian R. Jones
Journal of Molecular Structure | 2005
Ioan Notingher; Gavin Jell; Petronela L. Notingher; Isabelle Bisson; Olga Tsigkou; Julia M. Polak; Molly M. Stevens; Larry L. Hench