Olga Umnova
University of Salford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olga Umnova.
Journal of the Acoustical Society of America | 2006
Olga Umnova; Keith Attenborough; C. M. Linton
The acoustic transmission loss of a finite periodic array of long rigid cylinders, without and with porous absorbent covering, is studied both theoretically and in the laboratory. A multiple scattering model is extended to allow for the covering and its acoustical properties are described by a single parameter semi-empirical model. Data from laboratory measurements and numerical results are found to be in reasonable agreement. These data and predictions show that porous covering reduces the variation of transmission loss with frequency due to the stop/pass band structure observed with an array of rigid cylinders with similar overall radius and improves the overall attenuation in the higher frequency range. The predicted sensitivities to covering thickness and effective flow resistivity are explored. It is predicted that a random covered array also gives better attenuation than a random array of rigid cylinders with the same overall radius and volume fraction.
Journal of the Acoustical Society of America | 2000
Olga Umnova; Keith Attenborough; Kai Ming Li
An external flow approach is used to predict the viscous drag due to oscillating flow in an air-filled stack of fixed identical rigid spheres. Analytical expressions for dynamic and direct current (dc) permeability, high-frequency limit of tortuosity, and the characteristic viscous dimension are derived using a cell model with an adjustable cell radius which allows for hydrodynamic interactions between the spherical particles. The resulting theory requires knowledge of two fixed parameters: the volume porosity and the particle radius. The theory also requires a value for the cell radius. Use of the cell radius corresponding to that of the sphere circumscribing a unit cell of a cubic lattice arrangement is proposed. This is found to enable good agreement between predictions of the new theory and both published data and numerical results for simple cubic and random spherical packings.
Journal of the Acoustical Society of America | 2011
Rodolfo Venegas; Olga Umnova
Granular materials have been conventionally used for acoustic treatment due to their sound absorptive and sound insulating properties. An emerging field is the study of the acoustical properties of multiscale porous materials. An example of these is a granular material in which the particles are porous. In this paper, analytical and hybrid analytical-numerical models describing the acoustical properties of these materials are introduced. Image processing techniques have been employed to estimate characteristic dimensions of the materials. The model predictions are compared with measurements on expanded perlite and activated carbon showing satisfactory agreement. It is concluded that a double porosity granular material exhibits greater low-frequency sound absorption at reduced weight compared to a solid-grain granular material with similar mesoscopic characteristics.
Journal of the Acoustical Society of America | 2013
C. Lagarrigue; J.-P. Groby; Vincent Tournat; Olivier Dazel; Olga Umnova
The aim of this work is to design a layer of porous material with a high value of the absorption coefficient in a wide range of frequencies. It is shown that low frequency performance can be significantly improved by embedding periodically arranged resonant inclusions (slotted cylinders) into the porous matrix. The dissipation of the acoustic energy in a porous material due to viscous and thermal losses inside the pores is enhanced by the low frequency resonances of the inclusions and energy trapping between the inclusion and the rigid backing. A parametric study is performed in order to determine the influence of the geometry and the arrangement of the inclusions embedded in a porous layer on the absorption coefficient. The experiments confirm that low frequency absorption coefficient of a composite material is significantly higher than that of the porous layer without the inclusions.
Journal of the Acoustical Society of America | 2003
Olga Umnova; Keith Attenborough; E. Standley; A. Cummings
A model for the propagation of high amplitude continuous sound through hard-backed rigid-porous layers has been developed which allows for Forchheimers correction to Darcys law. The nonlinearity associated with this is shown to be particularly important in the range of frequencies around layer resonance. The model is based on the introduction of particle velocity dependent flow resistivity into the equivalent fluid model expression for complex tortuosity. Thermal effects are accounted for by means of a linear complex compressibility function. The model has been used to derive analytical expressions for surface impedance and reflection coefficient as a function of incident pressure amplitude. Depending on the material parameters, sample thickness, and frequency range the model predicts either growth or decrease of reflection coefficient with sound amplitude. Good agreement between model predictions and data for three rigid-porous materials is demonstrated.
Journal of the Acoustical Society of America | 2009
Olga Umnova; David Tsiklauri; Rodolfo Venegas
A variety of new porous materials with unusually small pores have been manufactured in the past decades. To predict their acoustical properties, the conventional models need to be modified. When pore size becomes comparable to the molecular mean free path of a saturating fluid, the no-slip conditions on the pore surface are no longer accurate and hence the slip effects have to be taken into account. In this paper, sound propagation in microfibrous materials is modeled analytically, approximating the geometry by a regular array of rigid parallel cylinders. It has been shown that velocity and thermal slip on a cylinder surface significantly changes the model predictions leading to lower attenuation coefficient and higher sound speed values. The influence of material porosity, fiber orientation, and size on these effects is investigated. Finite element method is used to numerically solve the oscillatory flow and heat transfer problems in a square array of cylindrical fibres. Numerical results are compared with predictions of the analytical model and the range of its validity is identified.
Journal of Physics D | 2011
Anton Krynkin; Olga Umnova; Alvin Yung Boon Chong; Shahram Taherzadeh; Keith Attenborough
Scattering by (a) a single composite scatterer consisting of a concentric arrangement of an outer N-slit rigid cylinder and an inner cylinder which is either rigid or in the form of a thin elastic shell and (b) by a finite periodic array of these scatterers in air has been investigated analytically and through laboratory experiments. The composite scatterer forms a system of coupled resonators and gives rise to multiple low-frequency resonances. The corresponding analytical model employs polar angle dependent boundary conditions on the surface of the N-slit cylinder. The solution inside the slits assumes plane waves. It is shown also that in the low-frequency range the N-slit rigid cylinder can be replaced by an equivalent fluid layer. Further approximations suggest a simple square root dependence of the resonant frequencies on the number of slits and this is confirmed by data. The observed resonant phenomena are associated with Helmholtz-like behaviour of the resonator for which the radius and width of the openings are much smaller than the wavelength. The problem of scattering by a finite periodic array of such coupled resonators in air is solved using multiple scattering techniques. The resulting model predicts band-gap effects resulting from the resonances of the individual composite scatterers below the first Bragg frequency. Predictions and data confirm that use of coupled resonators results in substantial insertion loss peaks related to the resonances within the concentric configuration. In addition, for both scattering problems experimental data, predictions of the analytical approach and predictions of the equivalent fluid layer approximations are compared in the low-frequency interval.
Journal of Applied Physics | 2014
A. S. Elliott; R. Venegas; J. P. Groby; Olga Umnova
An omnidirectional sound absorber based on the acoustic analogy of the electromagnetic metamaterial “black hole” has been developed and tested. The resulting structure is composed of a hollow cylindrical porous absorbing core and a graded index matching layer which employs multiple rods of varying size and spacing to gradually adjust the impedance of the air to that of the porous absorbing core. A semi-analytical model is developed, and the practical challenges and their implications with respect to performance are considered. A full size device is built and tested in an anechoic chamber and the semi-analytical model used in the design process is validated. Finally, the theory is extended to allow for losses in the metamaterial matching layer, and it is shown that improved performance may be achieved with a dual purpose layer which acts as an absorber whilst also providing the required impedance matching condition.
Journal of the Acoustical Society of America | 2004
Olga Umnova; Keith Attenborough; Ho-Chul Shin; A. Cummings
A model has been developed for the response of a rigid-porous hard-backed medium containing an arbitrary number of layers to high amplitude sound. Nonlinearity is introduced by means of a velocity-dependent flow resistivity in Johnson’s equivalent fluid model for the complex tortuosity of each layer. Numerical solution of the resulting system of algebraic equations allows prediction of the dependence of surface impedance and reflection coefficient on the incident pressure amplitude. Measurements have been made of the surface impedance of various triple layers, made from different diameters of spherical lead shot and double layers consisting of gravel with different mean particle size, subject to high-intensity continuous sound. Good agreement between the model predictions and data for these multiple-granular layers is demonstrated. Moreover it is shown both theoretically and experimentally that the layer configuration giving optimum performance at low sound intensities may not continue to do so as the incident sound level is increased and the response becomes increasingly nonlinear. It is shown also that the nonlinear behavior depends strongly on layering and that, in some cases, the behavior is changed simply by changing the top layer thickness.
Journal of the Acoustical Society of America | 2012
Fouad Bechwati; Mark R. Avis; D. J. Bull; Trevor J. Cox; Jonathan A. Hargreaves; David Moser; D.K. Ross; Olga Umnova; R. Venegas
Activated carbon can adsorb and desorb gas molecules onto and off its surface. Research has examined whether this sorption affects low frequency sound waves, with pressures typical of audible sound, interacting with granular activated carbon. Impedance tube measurements were undertaken examining the resonant frequencies of Helmholtz resonators with different backing materials. It was found that the addition of activated carbon increased the compliance of the backing volume. The effect was observed up to the highest frequency measured (500 Hz), but was most significant at lower frequencies (at higher frequencies another phenomenon can explain the behavior). An apparatus was constructed to measure the effective porosity of the activated carbon as well as the number of moles adsorbed at sound pressures between 104 and 118 dB and low frequencies between 20 and 55 Hz. Whilst the results were consistent with adsorption affecting sound propagation, other phenomena cannot be ruled out. Measurements of sorption isotherms showed that additional energy losses can be caused by water vapor condensing onto and then evaporating from the surface of the material. However, the excess absorption measured for low frequency sound waves is primarily caused by decreases in surface reactance rather than changes in surface resistance.