Olga V. Kretova
Engelhardt Institute of Molecular Biology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olga V. Kretova.
Cell Cycle | 2011
Vladimir A. Mitkevich; Irina Yu. Petrushanko; Pavel Spirin; Tatiana V. Fedorova; Olga V. Kretova; Nickolai A. Tchurikov; Vladimir S. Prassolov; Olga N. Ilinskaya; Alexander A. Makarov
Some RNases selectively attack malignant cells, triggering an apoptotic response, and therefore are considered as alternative chemotherapeutic drugs. Here we studied the effects of Bacillus intermedius RNase (binase) on murine myeloid progenitor cells FDC-P1; transduced FDC-P1 cells ectopically expressing mutated human KIT N822K oncogene and/or human AML1-ETO oncogene; and human leukemia Kasumi-1 cells expressing both of these oncogenes. Expression of both KIT and AML1-ETO oncogenes makes FDC-P1 cells sensitive to the toxic effects of binase. Kasumi-1 cells were the most responsive to the toxic actions of binase among the cell lines used in this work with an IC50 value of 0.56 µM. Either blocking the functional activity of the KIT protein with imatinib or knocking-down oncogene expression using lentiviral vectors producing shRNA against AML1-ETO or KIT eliminated the sensitivity of Kasumi-1 cells to binase toxic action and promoted their survival, even in the absence of KIT-dependent proliferation and antiapoptotic pathways. Here we provide evidence that the cooperative effect of the expression of mutated KIT and AML1-ETO oncogenes is crucial for selective toxic action of binase on malignant cells. These findings can facilitate clinical applications of binase providing a useful screen based on the presence of the corresponding target oncogenes in malignant cells.
Biochimie | 2013
Vladimir A. Mitkevich; Olga V. Kretova; Irina Yu. Petrushanko; Ksenia M. Burnysheva; Dmitry V. Sosin; Olga V. Simonenko; Olga N. Ilinskaya; Nickolai A. Tchurikov; Alexander A. Makarov
Cytotoxic exogenous RNases triggering apoptotic response in malignant cells have potential as anticancer drugs; surprisingly, detailed characterization of the RNase-induced apoptosis has not been conducted so far. Here we show that a cytotoxic RNase from Bacillus intermedius (binase) induces extrinsic and intrinsic apoptotic pathways in leukemic Kasumi-1 cells. The experiments were performed using TaqMan Array Human Apoptosis 96-well Plate for gene expression analysis, and flow cytometry. Cytometric studies demonstrated dissipation of the mitochondrial membrane potential, opening of mitochondrial permeability transition pores, activation of caspases, increase of intracellular Ca(2+) and decrease of reactive oxygen species levels. We found that expression of 62 apoptotic genes is up-regulated, including 16 genes that are highly up-regulated, and only one gene was found to be down-regulated. The highest, 16 fold increase of the expression level was observed for TNF gene. Highly up-regulated genes also include the non-canonical NF-κB signaling pathway and inflammatory caspases 1,4. The obtained results suggest that binase induces evolutionary acquired cellular response to a microbial agent and triggers unusual apoptosis pathway.
Journal of Molecular Cell Biology | 2015
Nickolai A. Tchurikov; Daria M. Fedoseeva; Dmitri V. Sosin; Anastasia Snezhkina; Nataliya V. Melnikova; Anna V. Kudryavtseva; Yuri V. Kravatsky; Olga V. Kretova
DNA double-strand breaks (DSBs) are involved in many cellular mechanisms, including replication, transcription, and genome rearrangements. The recent observation that hot spots of DSBs in human chromosomes delimit DNA domains that possess coordinately expressed genes suggests a strong relationship between the organization of transcription patterns and hot spots of DSBs. In this study, we performed mapping of hot spots of DSBs in a human 43-kb ribosomal DNA (rDNA) repeated unit. We observed that rDNA units corresponded to the most fragile sites in human chromosomes and that these units possessed at least nine specific regions containing clusters of extremely frequently occurring DSBs, which were located exclusively in non-coding intergenic spacer (IGS) regions. The hot spots of DSBs corresponded to only a specific subset of DNase-hypersensitive sites, and coincided with CTCF, PARP1, and HNRNPA2B1 binding sites, and H3K4me3 marks. Our rDNA-4C data indicate that the regions of IGS containing the hot spots of DSBs often form contacts with specific regions in different chromosomes, including the pericentromeric regions, as well as regions that are characterized by H3K27ac and H3K4me3 marks, CTCF binding sites, ChIA-PET and RIP signals, and high levels of DSBs. The data suggest a strong link between chromosome breakage and several different mechanisms of epigenetic regulation of gene expression.
Cell Cycle | 2010
Vladimir A. Mitkevich; Irina Yu. Petrushanko; Olga V. Kretova; Pavel Zelenikhin; Vladimir S. Prassolov; Nickolai A. Tchurikov; Olga N. Ilinskaya; Alexander A. Makarov
Mutational activation of c-Kit receptor tyrosine kinase is common in acute myelogenous leukemia (AML). One such activating point mutation is the N822K replacement in the c-Kit protein. Here we investigate the selective cytotoxic effect of binase - RNase from Bacillus intermedius - on FDC-P1-N822K cells. These cells were derived from myeloid progenitor FDC-P1 cells, in which ectopic expression of N822K c-kit gene induces interleukin-3 independent growth. In order to determine whether the sensitivity of these cells to binase is caused by the expression of c-kit oncogene, the cytotoxicity of the RNase was studied in the presence of selective inhibitor of mutated c-Kit imatinib (Gleevec). Inhibition of mutated c-Kit protein leads to the loss of cell sensitivity to the apoptotic effect of binase, while the latter still decreases the amount of cellular RNA. Using green fluorescent protein as an expression marker for the c-Kit oncoprotein, we demonstrate that the elimination of c-Kit is the key factor in selective cytotoxicity of binase. Quantitative RT-PCR with RNA samples isolated from the binase-treated FDC-P1-N822K cells shows that binase treatment results in 41% reduction in the amount of с-kit mRNA. This indicates that the transcript of the activated mutant c-kit is the target for toxic action of binase. Thus, the combination of inhibition of oncogenic protein with the destruction of its mRNA is a promising approach to eliminating malignant cells.
Nucleic Acids Research | 2009
Nickolai A. Tchurikov; Olga V. Kretova; Evgenia D. Moiseeva; Dmitri V. Sosin
Uncovering the nature of communication between enhancers, promoters and insulators is important for understanding the fundamental mechanisms that ensure appropriate gene expression levels. Here we describe an approach employing transient expression of genetic luciferase reporter gene constructs with quantitative RT–PCR analysis of transcription between an enhancer and Hsp70 promoter. We tested genetic constructs containing gypsy and/or Fab7 insulators in different orientations, and an enhancer from copia LTR-retroelement [(enh)copia]. A single gypsy or Fab7 insulator inserted between the promoter and enhancer in any polarity reduced enhancer action. A pair of insulators flanking the gene in any orientation exhibited increased insulation activity. We detected promoter-independent synthesis of non-coding RNA in the intergenic region of the constructs, which was induced by the enhancer in both directions and repressed by a single insulator or a pair of insulators. These results highlight the involvement of RNA-tracking mechanisms in the communications between enhancers and promoters, which are inhibited by insulators.
PLOS Genetics | 2013
Nickolai A. Tchurikov; Olga V. Kretova; Daria M. Fedoseeva; Dmitri V. Sosin; Sergei A. Grachev; Marina V. Serebraykova; Svetlana A. Romanenko; Nadezhda V. Vorobieva; Yuri V. Kravatsky
Genome instability plays a key role in multiple biological processes and diseases, including cancer. Genome-wide mapping of DNA double-strand breaks (DSBs) is important for understanding both chromosomal architecture and specific chromosomal regions at DSBs. We developed a method for precise genome-wide mapping of blunt-ended DSBs in human chromosomes, and observed non-random fragmentation and DSB hot spots. These hot spots are scattered along chromosomes and delimit protected 50–250 kb DNA domains. We found that about 30% of the domains (denoted forum domains) possess coordinately expressed genes and that PARP1 and HNRNPA2B1 specifically bind DNA sequences at the forum domain termini. Thus, our data suggest a novel type of gene regulation: a coordinated transcription or silencing of gene clusters delimited by DSB hot spots as well as PARP1 and HNRNPa2B1 binding sites.
Nucleic Acids Research | 2011
Nickolai A. Tchurikov; Olga V. Kretova; Dmitri V. Sosin; Ivan A. Zykov; Igor F. Zhimulev; Yuri V. Kravatsky
Forum domains are stretches of chromosomal DNA that are excised from eukaryotic chromosomes during their spontaneous non-random fragmentation. Most forum domains are 50–200 kb in length. We mapped forum domain termini using FISH on polytene chromosomes and we performed genome-wide mapping using a Drosophila melanogaster genomic tiling microarray consisting of overlapping 3 kb fragments. We found that forum termini very often correspond to regions of intercalary heterochromatin and regions of late replication in polytene chromosomes. We found that forum domains contain clusters of several or many genes. The largest forum domains correspond to the main clusters of homeotic genes inside BX-C and ANTP-C, cluster of histone genes and clusters of piRNAs. PRE/TRE and transcription factor binding sites often reside inside domains and do not overlap with forum domain termini. We also found that about 20% of forum domain termini correspond to small chromosomal regions where Ago1, Ago2, small RNAs and repressive chromatin structures are detected. Our results indicate that forum domains correspond to big multi-gene chromosomal units, some of which could be coordinately expressed. The data on the global mapping of forum domains revealed a strong correlation between fragmentation sites in chromosomes, particular sets of mobile elements and regions of intercalary heterochromatin.
PLOS ONE | 2007
Nickolai A. Tchurikov; Olga V. Kretova
Separate conserved copies of suffix, a short interspersed Drosophila retroelement (SINE), and also divergent copies in the 3′ untranslated regions of the three genes, have already been described. Suffix has also been identified on the 3′ end of the Drosophila non-LTR F element, where it forms the last conserved domain of the reverse transcriptase (RT). In our current study, we show that the separate copies of suffix are far more actively transcribed than their counterparts on the F element. Transcripts from both strands of suffix are present in RNA preparations during all stages of Drosophila development, providing the potential for the formation of double-stranded RNA and the initiation of RNA interference (RNAi). Using in situ RNA hybridization analysis, we have detected the expression of both sense and antisense suffix transcripts in germinal cells. These sense and antisense transcripts are colocalized in the primary spermatocytes and in the cytoplasm of the nurse cells, suggesting that they form double-stranded RNA. We performed further analyses of suffix-specific small RNAs using northern blotting and SI nuclease protection assays. Among the total RNA preparations isolated from embryos, larvae, pupae and flies, suffix-specific small interfering RNAs (siRNAs) were detected only in pupae. In wild type ovaries, both the siRNAs and longer suffix-specific Piwi-interacting RNAs (piRNAs) were observed, whereas in ovaries of the Dicer-2 mutant, only piRNAs were detected. We further found by 3′ RACE that in pupae and ovaries, F element transcripts lacking the suffix sequence are also present. Our data provide direct evidence that suffix-specific RNAi leads to the silencing of the relative LINE (long interspersed element), F element, and suggests that SINE-specific RNA interference could potentially downregulate a set of genes possessing SINE stretches in their 5′ or 3′ non-coding regions. These data also suggest that double stranded RNAs possessing suffix are processed by both RNAi and an additional silencing mechanism.
Gene | 2016
Nickolai A. Tchurikov; Daria M. Fedoseeva; Natalya M. Gashnikova; Dmitri V. Sosin; Maria A. Gorbacheva; Ildar R. Alembekov; V. R. Chechetkin; Yuri V. Kravatsky; Olga V. Kretova
Highly active antiretroviral therapy has greatly reduced the morbidity and mortality of AIDS. However, many of the antiretroviral drugs are toxic with long-term use, and all currently used anti-HIV agents generate drug-resistant mutants. Therefore, there is a great need for new approaches to AIDS therapy. RNAi is a powerful means of inhibiting HIV-1 production in human cells. We propose to use RNAi for gene therapy of HIV/AIDS. Previously we identified a number of new biologically active siRNAs targeting several moderately conserved regions in HIV-1 transcripts. Here we analyze the heterogeneity of nucleotide sequences in three RNAi targets in sequences encoding the reverse transcriptase and integrase domains of current isolates of HIV-1 subtype A in Russia. These data were used to generate genetic constructs expressing short hairpin RNAs 28-30-bp in length that could be processed in cells into siRNAs. After transfection of the constructs we observed siRNAs that efficiently attacked the selected targets. We expect that targeting several viral genes important for HIV-1 reproduction will help overcome the problem of viral adaptation and will prevent the appearance of RNAi escape mutants in current virus strains, an important feature of gene therapy of HIV/AIDS.
PLOS ONE | 2011
Nickolai A. Tchurikov; Olga V. Kretova
In the Drosophila melanogaster germline, the piRNA pathway silences retrotransposons as well as other transcribed repetitive elements. Suffix is an unusual short retroelement that was identified both as an actively transcribed repetitive element and also as an element at the 3′ ends of the Drosophila non-LTR F element. The copies of suffix that are F element-independent are far more actively transcribed than their counterparts on the F element. We studied the patterns of small RNAs targeting both strands of suffix in Drosophila ovaries using an RNase protection assay and the analysis of the corresponding RNA sequences from the libraries of total small RNAs. Our results indicate that suffix sense and antisense transcripts are targeted mainly by 23–29 nucleotides in length piRNAs and also by 21 nucleotides in length siRNAs. Suffix sense transcripts actively form longer RNA species, corresponding either to partial digestion products of the RNAi and Piwi pathways or to another RNA silencing mechanism. Both sense and antisense suffix transcripts accumulated in the ovaries of homozygous spn-E, piwi and aub mutants. These results provide evidence that suffix sense and antisense transcripts in the germ line and soma are targeted by both RNAi and Piwi pathways and that a Dicer-independent pathway of biogenesis of siRNAs could exist in Drosophila cells.
Collaboration
Dive into the Olga V. Kretova's collaboration.
State Research Center of Virology and Biotechnology VECTOR
View shared research outputs