Olga V. Stepanenko
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olga V. Stepanenko.
BioTechniques | 2011
Olesya V. Stepanenko; Olga V. Stepanenko; Daria M. Shcherbakova; Irina M. Kuznetsova; Konstantin K. Turoverov; Vladislav V. Verkhusha
The diverse biochemical and photophysical properties of fluorescent proteins (FPs) have enabled the generation of a growing palette of colors, providing unique opportunities for their use in a variety of modern biology applications. Modulation of these FP characteristics is achieved through diversity in both the structure of the chromophore as well as the contacts between the chromophore and the surrounding protein barrel. Here we review our current knowledge of blue, green, and red chromophore formation in permanently emitting FPs, photoactivatable FPs, and fluorescent timers. Progress in understanding the interplay between FP structure and function has allowed the engineering of FPs with many desirable features, and enabled recent advances in microscopy techniques such as super-resolution imaging of single molecules, imaging of protein dynamics, photochromic FRET, deep-tissue imaging, and multicolor two-photon microscopy in live animals.
International Review of Cell and Molecular Biology | 2013
Olesya V. Stepanenko; Olga V. Stepanenko; Irina M. Kuznetsova; Vladislav V. Verkhusha; Konstantin K. Turoverov
This review focuses on the current view of the interaction between the β-barrel scaffold of fluorescent proteins and their unique chromophore located in the internal helix. The chromophore originates from the polypeptide chain and its properties are influenced by the surrounding protein matrix of the β-barrel. On the other hand, it appears that a chromophore tightens the β-barrel scaffold and plays a crucial role in its stability. Furthermore, the presence of a mature chromophore causes hysteresis of protein unfolding and refolding. We survey studies measuring protein unfolding and refolding using traditional methods as well as new approaches, such as mechanical unfolding and reassembly of truncated fluorescent proteins. We also analyze models of fluorescent protein unfolding and refolding obtained through different approaches, and compare the results of protein folding in vitro to co-translational folding of a newly synthesized polypeptide chain.
Scientific Reports | 2016
Olesya V. Stepanenko; Mikhail Baloban; Grigory S. Bublikov; Daria M. Shcherbakova; Olga V. Stepanenko; Konstantin K. Turoverov; Irina M. Kuznetsova; Vladislav V. Verkhusha
Fluorescent proteins (FPs) engineered from bacterial phytochromes attract attention as probes for in vivo imaging due to their near-infrared (NIR) spectra and use of available in mammalian cells biliverdin (BV) as chromophore. We studied spectral properties of the iRFP670, iRFP682 and iRFP713 proteins and their mutants having Cys residues able to bind BV either in both PAS (Cys15) and GAF (Cys256) domains, in one of these domains, or without these Cys residues. We show that the absorption and fluorescence spectra and the chromophore binding depend on the location of the Cys residues. Compared with NIR FPs in which BV covalently binds to Cys15 or those that incorporate BV noncovalently, the proteins with BV covalently bound to Cys256 have blue-shifted spectra and higher quantum yield. In dimeric NIR FPs without Cys15, the covalent binding of BV to Сys256 in one monomer allosterically inhibits the covalent binding of BV to the other monomer, whereas the presence of Cys15 allosterically promotes BV binding to Cys256 in both monomers. The NIR FPs with both Cys residues have the narrowest blue-shifted spectra and the highest quantum yield. Our analysis resulted in the iRFP713/Val256Cys protein with the highest brightness in mammalian cells among available NIR FPs.
PLOS ONE | 2012
Olesya V. Stepanenko; Olga V. Stepanenko; Irina M. Kuznetsova; Daria M. Shcherbakova; Vladislav V. Verkhusha; Konstantin K. Turoverov
Having a high folding efficiency and a low tendency to aggregate, the superfolder GFP (sfGFP) offers a unique opportunity to study the folding of proteins that have a β-barrel topology. Here, we studied the unfolding–refolding of sfGFP that was induced by guanidine thiocyanate (GTC), which is a stronger denaturing agent than GdnHCl or urea. Structural perturbations of sfGFP were studied by spectroscopic methods (absorbance, fluorescence, and circular dichroism), by acrylamide quenching of tryptophan and green chromophore fluorescence, and by size-exclusion chromatography. Low concentrations of GTC (up to 0.1 M) induce subtle changes in the sfGFP structure. The pronounced changes in the visible absorption spectrum of sfGFP which are accompanied by a dramatic decrease in tryptophan and green chromophore fluorescence was recorded in the range 0–0.7 M GNC. These alterations of sfGFP characteristics that erroneously can be mixed up with appearance of intermediate state in fact have pure spectroscopic but not structural nature. Higher concentrations of GTC (from 0.7 to 1.7 M), induce a disruption of the sfGFP structure, that is manifested in simultaneous changes of all of the detected parameters. Full recovery of native properties of denaturated sfGFP was observed after denaturant removal. The refolding of sfGFP passes through the accumulation of the off-pathway intermediate state, in which inner alpha-helix and hence green chromophore and Trp57 are still not tuned up to (properly integrated into) the already formed β-barrel scaffold of protein. Incorporation of the chromophore in the β-barrel in the pathway of refolding and restoration of its ability to fluoresce occur in a narrow range of GTC concentrations from 1.0 to 0.7 M, and a correct insertion of Trp 57 occurs at concentrations ranging from 0.7 to 0 M GTC. These two processes determine the hysteresis of protein unfolding and refolding.
Journal of Physical Chemistry B | 2011
Olga V. Stepanenko; Alexander V. Fonin; Olesya V. Stepanenko; Kateryna Morozova; Vladislav V. Verkhusha; Irina M. Kuznetsova; Konstantin K. Turoverov; Maria Staiano; Sabato D'Auria
The galactose/glucose-binding protein from E. coli (GGBP) is a 32 kDa protein possessing the typical two-domains structure of the ligand-binding proteins family. GGBP is characterized by low dissociation constant values with respect to glucose binding, displaying an affinity constant for glucose in micromolar range. This feature makes GGBP unsuitable as a sensitive probe for continuous glucose monitoring in blood of diabetic patients. In this work we designed, produced, and characterized two mutant forms of GGBP carrying the following amino acid substitutions in the active center of the protein: W183A or F16A. The two mutant GGBP forms retained a globular structure similar to that of the wild-type GGBP and displayed an affinity for glucose lower than the wild-type GGBP. A deep inspection of the entire set of the obtained results pointed out that the N- and C-terminal domains of GGBP-W183A in the absence of glucose have a stability lower than that of the wild-type protein. In the presence of glucose, the two domains of GGBP-W183A were tightly bound, making the protein structure more stable to the action of denaturing agents. On the contrary, the mutant form GGBP-F16A possesses a very restricted structural stability both in the absence and in the presence of glucose. In this work the role of Phe 16 and W 183 are discussed with regard to the structural and functional features of GGBP. In addition, some general guidelines are reported for the design of a novel glucose biosensor based on the use of GGBP.
FEBS Journal | 2014
Olesya V. Stepanenko; Grigory S. Bublikov; Olga V. Stepanenko; Daria M. Shcherbakova; Vladislav V. Verkhusha; Konstantin K. Turoverov; Irina M. Kuznetsova
The possibility of engineering near‐infrared fluorescent proteins and biosensors from bacterial phytochrome photoreceptors (BphPs) has led to substantial interest in this family of proteins. The near‐infrared fluorescent proteins have allowed non‐invasive bio‐imaging of deep tissues and whole organs in living animals. BphPs and derived near‐infrared fluorescent proteins contain a structural element, called a knot, in their polypeptide chains. The formation of knot structures in proteins was refuted for a long time. Here, we studied the denaturation and renaturation processes of the near‐infrared fluorescent probe iRFP, engineered from RpBphP2, which utilizes a heme‐derived tetrapyrrole compound biliverdin as a chromophore. iRFP contains a unique figure‐of‐eight knot. The denaturation and renaturation curves of the iRFP apoform coincided well, suggesting efficient refolding. However, the iRFP holoform exhibited irreversible unfolding and aggregation associated with the bound chromophore. The knot structure in the apoform did not prevent subsequent binding of biliverdin, resulting in the functional iRFP holoform. We suggest that the irreversibility of protein unfolding is caused by post‐translational protein modifications, such as chromophore binding, rather than the presence of the knot. These results are essential for future design of BphP‐based near‐infrared probes, and add important features to our knowledge of protein folding.
Journal of Physical Chemistry B | 2011
Olga V. Stepanenko; Olesya V. Stepanenko; Olga I. Povarova; Alexander V. Fonin; Irina M. Kuznetsova; Konstantin K. Turoverov; Maria Staiano; Antonio Varriale; Sabato D’Auria
In this work we have shown that the unfolding-refolding process of the D-galactose/D-glucose-binding protein (GGBP) in the presence of glucose (Glc) induced by the chemical denaturant Gdn-HCI is reversible. In addition, Glc binding does not only stabilize GGBP structure but it also considerably slows down the achievement of the equilibrium between the native protein in GGBP/Glc complex and the unfolded protein. The limiting step of the unfolding-refolding process of the complex GGBP/Glc is the arrangement/de-arrangement of the configuration fit between the protein in the native state and the ligand. The rate of these processes increases/decreases with the increase/decrease of the denaturant concentration. Calcium depletion had a pronounced destabilizing effect on the structure of GGBP but did not affect the stability of GGBP/Glc complex. Unfolding of GGBP/Ca complex is reversible. Only incubation of the unfolded protein at high temperature leads to an irreversible process due to the aggregation of the protein. The amount of protein aggregation is determined by the protein concentration, the temperature and the duration of the incubation.
Journal of Biomolecular Structure & Dynamics | 2016
Olga V. Stepanenko; Olga I. Povarova; Anna I. Sulatskaya; Luisa A. Ferreira; Boris Y. Zaslavsky; Irina M. Kuznetsova; Konstantin K. Turoverov; Vladimir N. Uversky
The natural environment of a protein inside a cell is characterized by the almost complete lack of unoccupied space, limited amount of free water, and the tightly packed crowd of various biological macromolecules, such as proteins, nucleic acids, polysaccharides, and complexes thereof. This extremely crowded natural milieu is poorly mimicked by slightly salted aqueous solutions containing low concentrations of a protein of interest. The accepted practice is to model crowded environments by adding high concentrations of various polymers that serve as model “crowding agents” to the solution of a protein of interest. Although studies performed under these model conditions revealed that macromolecular crowding might have noticeable influence on various aspects related to the protein structure, function, folding, conformational stability, and aggregation propensity, the complete picture describing conformational behavior of a protein under these conditions is missing as of yet. Furthermore, there is an accepted belief that the conformational stability of globular proteins increases in the presence crowding agents due to the excluded volume effects. The goal of this study was to conduct a systematic analysis of the effect of high concentrations of PEG-8000 and Dextran-70 on the unfolding behavior of eleven globular proteins belonging to different structural classes.
Chemistry and Physics of Lipids | 2014
Olga S. Ostroumova; Evgeny G. Chulkov; Olga V. Stepanenko; Ludmila V. Schagina
Confocal fluorescence microscopy have been employed to investigate phase separation in giant unilamellar vesicles prepared from binary mixtures of unsaturated dioleoylphosphocholine with saturated phosphocholines or brain sphingomyelin in the absence and presence of the flavonoids, biochanin A, phloretin, and myricetin. It has been demonstrated that biochanin A and phloretin make uncolored domains more circular or eliminate visible phase separation in liposomes while myricetin remains the irregular shape of fluorescence probe-excluding domains. Influence of the flavonoids on the endotherms of liposome suspension composed of dioleoylphosphocholine and dimyristoylphosphocholine was investigated by the differential scanning calorimetry. Calorimetry data do not contradict to confocal imaging results.
PeerJ | 2014
Alexander V. Fonin; Olga V. Stepanenko; Olga I. Povarova; Catherine A. Volova; Elizaveta M. Philippova; Grigory S. Bublikov; Irina M. Kuznetsova; Alexander P. Demchenko; Konstantin K. Turoverov
The mutant form GGBP/H152C of the D-glucose/D-galactose-binding protein with the solvatochromic dye BADAN linked to cysteine residue Cys 152 can be used as a potential base for a sensitive element of glucose biosensor system. We investigated the influence of various external factors on the physical-chemical properties of GGBP/H152C-BADAN and its complex with glucose. The high affinity (Kd = 8.5 µM) and high binding rate of glucose make GGBP/H152C-BADAN a good candidate to determine the sugar content in biological fluids extracted using transdermal techniques. It was shown that changes in the ionic strength and pH of solution within the physiological range did not have a significant influence on the fluorescent characteristics of GGBP/H152C-BADAN. The mutant form GGBP/H152C has relatively low resistance to denaturation action of GdnHCl and urea. This result emphasizes the need to find more stable proteins for the creation of a sensitive element for a glucose biosensor system.