Olga Vladimirova
Wistar Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olga Vladimirova.
Journal of Virology | 2002
Alexander M. Ishov; Olga Vladimirova; Gerd G. Maul
ABSTRACT Human cytomegalovirus (HCMV) starts immediate-early transcription at nuclear domains 10 (ND10), forming a highly dynamic immediate transcript environment at this nuclear site. The reason for this spatial correlation remains enigmatic, and the mechanism for induction of transcription at ND10 is unknown. We investigated whether tegument-based transactivators are involved in the specific intranuclear location of HCMV. Here, we demonstrate that the HCMV transactivator tegument protein pp71 accumulates at ND10 before the production of immediate-early proteins. Intracellular trafficking of pp71 is facilitated through binding to a coiled-coil region of Daxx. The C-terminal domain of Daxx then interacts with SUMO-modified PML, resulting in the deposition of pp71 at ND10. In Daxx-deficient cells, pp71 does not accumulate at ND10, proving in vivo the necessity of Daxx for pp71 deposition. Also, HCMV forms immediate transcript environments at sites other than ND10 in Daxx-deficient cells, and so does the HCMV pp71 knockout mutant UL82−/− in normal cells. This result strongly suggests that pp71 and Daxx are essential for HCMV transcription at ND10. Lack of Daxx had the effect of reducing the infection rate. We conclude that the tegument transactivator pp71 facilitates viral genome deposition and transcription at ND10, possibly priming HCMV for more efficient productive infection.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Zhong Deng; Galina Glousker; Aliah Molczan; Alan J. Fox; Noa Lamm; Jayaraju Dheekollu; Orr-El Weizman; Michael Schertzer; Zhuo Wang; Olga Vladimirova; Jonathan Schug; Memet Aker; Arturo Londoño-Vallejo; Klaus H. Kaestner; Paul M. Lieberman; Yehuda Tzfati
Significance Telomeres protect the ends of eukaryotic chromosomes. Telomeres shorten with age and serve as a biological clock that limits cell proliferation. Excessive telomere shortening accelerates aging, but telomere elongation may facilitate cancer. We found inherited mutations in the regulator of telomere elongation helicase 1 (RTEL1), which cause Hoyeraal–Hreidarsson syndrome, a fatal disease characterized by accelerated telomere shortening, immunodeficiency, and developmental defects. Introducing a normal RTEL1 gene into affected cells prevented telomere shortening and extended their lifespan in culture. The telomere defects, genomic instability, and growth arrest observed in RTEL1-deficient cells help in our understanding the central roles of telomeres in aging and cancer. Telomeres repress the DNA damage response at the natural chromosome ends to prevent cell-cycle arrest and maintain genome stability. Telomeres are elongated by telomerase in a tightly regulated manner to ensure a sufficient number of cell divisions throughout life, yet prevent unlimited cell division and cancer development. Hoyeraal–Hreidarsson syndrome (HHS) is characterized by accelerated telomere shortening and a broad range of pathologies, including bone marrow failure, immunodeficiency, and developmental defects. HHS-causing mutations have previously been found in telomerase and the shelterin component telomeric repeat binding factor 1 (TRF1)-interacting nuclear factor 2 (TIN2). We identified by whole-genome exome sequencing compound heterozygous mutations in four siblings affected with HHS, in the gene encoding the regulator of telomere elongation helicase 1 (RTEL1). Rtel1 was identified in mouse by its genetic association with telomere length. However, its mechanism of action and whether it regulates telomere length in human remained unknown. Lymphoblastoid cell lines obtained from a patient and from the healthy parents carrying heterozygous RTEL1 mutations displayed telomere shortening, fragility and fusion, and growth defects in culture. Ectopic expression of WT RTEL1 suppressed the telomere shortening and growth defect, confirming the causal role of the RTEL1 mutations in HHS and demonstrating the essential function of human RTEL1 in telomere protection and elongation. Finally, we show that human RTEL1 interacts with the shelterin protein TRF1, providing a potential recruitment mechanism of RTEL1 to telomeres.
Journal of Virology | 2009
Dmitri Negorev; Olga Vladimirova; Gerd G. Maul
ABSTRACT Cells have intrinsic defenses against virus infection, acting before the innate or the adaptive immune response. Preexisting antiviral proteins such as PML, Daxx, and Sp100 are stored in specific nuclear domains (ND10). In herpes simplex virus type 1 (HSV-1), the immediate-early protein ICP0 serves as a counterdefense through degradation of the detrimental protein PML. We asked whether interferon (IFN)-upregulated Sp100 is similarly antagonized by ICP0 in normal human fibroblasts by using a selective-knockdown approach. We find that of the four Sp100 isoforms, the three containing a SAND domain block the transcription of HSV-1 proteins ICP0 and ICP4 at the promoter level and that IFN changes the differential splicing of the Sp100 transcript in favor of the inhibitor Sp100C. At the protein level, ICP0 activity does not lead to the hydrolysis of any of the Sp100 isoforms. The SAND domain-containing isoforms are not general inhibitors of viral promoters, as the activity of the major immediate-early cytomegalovirus promoter is not diminished, whereas the long terminal repeat of a retrovirus, like the ICP0 promoter, is strongly inhibited. Since we could not find a specific promoter region in the ICP0 gene that responds to the SAND domain-containing isoforms, we questioned whether Sp100 could act through other antiviral proteins such as PML. We find that all four Sp100 isoforms stabilize ND10 and protect PML from ICP0-based hydrolysis. Loss of either all PML isoforms or all Sp100 isoforms reduces the opposite constituent ND10 protein, suggesting that various interdependent mechanisms of ND10-based proteins inhibit virus infection at the immediate-early level.
The EMBO Journal | 2016
Stephen Tutton; Greggory A Azzam; Nicholas Stong; Olga Vladimirova; Andreas Wiedmer; Jessica Monteith; Kate Beishline; Zhuo Wang; Zhong Deng; Harold Riethman; Steven B. McMahon; Maureen E. Murphy; Paul M. Lieberman
Telomeres and tumor suppressor protein TP53 (p53) function in genome protection, but a direct role of p53 at telomeres has not yet been described. Here, we have identified non‐canonical p53‐binding sites within the human subtelomeres that suppress the accumulation of DNA damage at telomeric repeat DNA. These non‐canonical subtelomeric p53‐binding sites conferred transcription enhancer‐like functions that include an increase in local histone H3K9 and H3K27 acetylation and stimulation of subtelomeric transcripts, including telomere repeat‐containing RNA (TERRA). p53 suppressed formation of telomere‐associated γH2AX and prevented telomere DNA degradation in response to DNA damage stress. Our findings indicate that p53 provides a direct chromatin‐associated protection to human telomeres, as well as other fragile genomic sites. We propose that p53‐associated chromatin modifications enhance local DNA repair or protection to provide a previously unrecognized tumor suppressor function of p53.
Cancer Research | 2010
Dmitri Negorev; Olga Vladimirova; Andrew V. Kossenkov; Elena V. Nikonova; Renee M. Demarest; Anthony J. Capobianco; Michael K. Showe; Frank J. Rauscher; Louise C. Showe; Gerd G. Maul
Identifying the functions of proteins, which associate with specific subnuclear structures, is critical to understanding eukaryotic nuclear dynamics. Sp100 is a prototypical protein of ND10/PML nuclear bodies, which colocalizes with Daxx and the proto-oncogenic PML. Sp100 isoforms contain SAND, PHD, Bromo, and HMG domains and are highly sumoylated, all characteristics suggestive of a role in chromatin-mediated gene regulation. A role for Sp100 in oncogenesis has not been defined previously. Using selective Sp100 isoform-knockdown approaches, we show that normal human diploid fibroblasts with reduced Sp100 levels rapidly senesce. Subsequently, small rapidly dividing Sp100 minus cells emerge from the senescing fibroblasts and are found to be highly tumorigenic in nude mice. The derivation of these tumorigenic cells from the parental fibroblasts is confirmed by microsatellite analysis. The small rapidly dividing Sp100 minus cells now also lack ND10/PML bodies, and exhibit genomic instability and p53 cytoplasmic sequestration. They have also activated MYC, RAS, and TERT pathways and express mesenchymal to epithelial transdifferentiation (MET) markers. Reintroduction of expression of only the Sp100A isoform is sufficient to maintain senescence and to inhibit emergence of the highly tumorigenic cells. Global transcriptome studies, quantitative PCR, and protein studies, as well as immunolocalization studies during the course of the transformation, reveal that a transient expression of stem cell markers precedes the malignant transformation. These results identify a role for Sp100 as a tumor suppressor in addition to its role in maintaining ND10/PML bodies and in the epigenetic regulation of gene expression.
Cell Reports | 2014
Zhong Deng; Eui Tae Kim; Olga Vladimirova; Jayaraju Dheekollu; Zhuo Wang; Alyshia Newhart; Dongmei Liu; Jaclyn L. Myers; Scott E. Hensley; Jennifer F. Moffat; Susan M. Janicki; Nigel W. Fraser; David M. Knipe; Matthew D. Weitzman; Paul M. Lieberman
Telomeres protect the ends of cellular chromosomes. We show here that infection with herpes simplex virus 1 (HSV-1) results in chromosomal structural aberrations at telomeres and the accumulation of telomere dysfunction-induced DNA damage foci (TIFs). At the molecular level, HSV-1 induces transcription of telomere repeat-containing RNA (TERRA), followed by the proteolytic degradation of the telomere protein TPP1 and loss of the telomere repeat DNA signal. The HSV-1-encoded E3 ubiquitin ligase ICP0 is required for TERRA transcription and facilitates TPP1 degradation. Small hairpin RNA (shRNA) depletion of TPP1 increases viral replication, indicating that TPP1 inhibits viral replication. Viral replication protein ICP8 forms foci that coincide with telomeric proteins, and ICP8-null virus failed to degrade telomere DNA signal. These findings suggest that HSV-1 reorganizes telomeres to form ICP8-associated prereplication foci and to promote viral genomic replication.
Scientific Reports | 2017
Fengchao Lang; Xin Li; Olga Vladimirova; Benxia Hu; Guijun Chen; Yu Xiao; Vikrant Singh; Danfeng Lu; Lihong Li; Hongbo Han; Jayamanna Wickramasinghe; Sheryl Smith; Chunfu Zheng; Qihan Li; Paul M. Lieberman; Nigel W. Fraser; Jumin Zhou
CTCF is an essential chromatin regulator implicated in important nuclear processes including in nuclear organization and transcription. Herpes Simplex Virus-1 (HSV-1) is a ubiquitous human pathogen, which enters productive infection in human epithelial and many other cell types. CTCF is known to bind several sites in the HSV-1 genome during latency and reactivation, but its function has not been defined. Here, we report that CTCF interacts extensively with the HSV-1 DNA during lytic infection by ChIP-seq, and its knockdown results in the reduction of viral transcription, viral genome copy number and virus yield. CTCF knockdown led to increased H3K9me3 and H3K27me3, and a reduction of RNA pol II occupancy on viral genes. Importantly, ChIP-seq analysis revealed that there is a higher level of CTD Ser2P modified RNA Pol II near CTCF peaks relative to the Ser5P form in the viral genome. Consistent with this, CTCF knockdown reduced the Ser2P but increased Ser5P modified forms of RNA Pol II on viral genes. These results suggest that CTCF promotes HSV-1 lytic transcription by facilitating the elongation of RNA Pol II and preventing silenced chromatin on the viral genome.
Nature Communications | 2017
Kate Beishline; Olga Vladimirova; Stephen Tutton; Zhuo Wang; Zhong Deng; Paul M. Lieberman
Telomere repeat DNA forms a nucleo-protein structure that can obstruct chromosomal DNA replication, especially under conditions of replication stress. Transcription of telomere repeats can initiate at subtelomeric CTCF-binding sites to generate telomere repeat-encoding RNA (TERRA), but the role of transcription, CTCF, and TERRA in telomere replication is not known. Here, we have used CRISPR/Cas9 gene editing to mutate CTCF-binding sites at the putative start site of TERRA transcripts for a class of subtelomeres. Under replication stress, telomeres lacking CTCF-driven TERRA exhibit sister-telomere loss and upon entry into mitosis, exhibit the formation of ultra-fine anaphase bridges and micronuclei. Importantly, these phenotypes could be rescued by the forced transcription of TERRA independent of CTCF binding. Our findings indicate that subtelomeric CTCF facilitates telomeric DNA replication by promoting TERRA transcription. Our findings also demonstrate that CTCF-driven TERRA transcription acts in cis to facilitate telomere repeat replication and chromosome stability.TERRA RNA is involved in maintaining stability during telomere repeat replication. Here the authors, by using CRISPR/Cas9, mutate CTCF-binding sites at start site of TERRA transcripts and find that subtelomeric CTCF facilitates telomeric DNA replication by promoting TERRA transcription.
Nature Communications | 2016
Hongda Huang; Zhong Deng; Olga Vladimirova; Andreas Wiedmer; Fang Lu; Paul M. Lieberman; Dinshaw J. Patel
The histone H3.3 chaperone DAXX is implicated in formation of heterochromatin and transcription silencing, especially for newly infecting DNA virus genomes entering the nucleus. Epstein-Barr virus (EBV) can efficiently establish stable latent infection as a chromatinized episome in the nucleus of infected cells. The EBV tegument BNRF1 is a DAXX-interacting protein required for the establishment of selective viral gene expression during latency. Here we report the structure of BNRF1 DAXX-interaction domain (DID) in complex with DAXX histone-binding domain (HBD) and histones H3.3-H4. BNRF1 DID contacts DAXX HBD and histones through non-conserved loops. The BNRF1-DAXX interface is responsible for BNRF1 localization to PML-nuclear bodies typically associated with host-antiviral resistance and transcriptional repression. Paradoxically, the interface is also required for selective transcription activation of viral latent cycle genes required for driving B-cell proliferation. These findings reveal molecular details of virus reprogramming of an antiviral histone chaperone to promote viral latency and cellular immortalization.
Journal of Cell Biology | 1999
Alexander M. Ishov; Alexey G. Sotnikov; Dmitri Negorev; Olga Vladimirova; Norma F Neff; Tetsu Kamitani; Edward T.H. Yeh; Jerome F. Strauss; Gerd G. Maul