Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olga Will is active.

Publication


Featured researches published by Olga Will.


Journal of Nutritional Biochemistry | 2013

DSS-induced acute colitis in C57BL/6 mice is mitigated by sulforaphane pre-treatment

Anika E. Wagner; Olga Will; Christine Sturm; Simone Lipinski; Philip Rosenstiel; Gerald Rimbach

The Brassica-derived isothiocyanate sulforaphane (SFN) is known to induce factor erythroid 2-related factor 2 (Nrf2), a transcription factor centrally involved in chemoprevention. Furthermore, SFN exhibits anti-inflammatory properties in vitro and in vivo. However, little is known regarding the anti-inflammatory properties of SFN in severe inflammatory phenotypes. In the present study, we tested if pre-treatment with SFN protects mice from dextran sodium sulphate (DSS)-induced colitis. C57BL/6 mice received either phosphate-buffered saline (control) or 25 mg/kg body weight (BW) SFN per os for 7 days. Subsequently, acute colitis was induced by administering 4% DSS via drinking water for 5 days and BWs, stool consistency and faecal blood loss were recorded. Following endoscopic colonoscopy, mice were sacrificed, the organs excised and spleen weights and colon lengths measured. For histopathological analysis, distal colon samples were fixed in 4% para-formaldehyde, sectioned and stained with hematoxylin/eosin. Inflammatory biomarkers were also measured in distal colon. Treatment with SFN prior to colitis induction significantly minimised both BW loss and the disease activity index compared to control mice. Furthermore, colon lengths in SFN pre-treated mice were significantly longer than in control mice. Both macroscopic and microscopic analysis of the colon revealed attenuated inflammation in SFN pre-treated animals. mRNA analysis of distal colon samples confirmed reduced expression of inflammatory markers and increased expression of Nrf2-dependent genes in SFN pre-treated mice. Our results indicate that pre-treating mice with SFN confers protection from DSS-induced colitis. These protective effects were corroborated macroscopically, microscopically and at the molecular level.


Journal of Biological Chemistry | 2014

Polo-like Kinase 2, a Novel ADAM17 Signaling Component, Regulates Tumor Necrosis Factor α Ectodomain Shedding

Jeanette Schwarz; Stefanie Schmidt; Olga Will; Tomas Koudelka; Kaja Köhler; Melanie Boss; Björn Rabe; Andreas Tholey; Jürgen Scheller; Dirk Schmidt-Arras; Michael Schwake; Stefan Rose-John; Athena Chalaris

Background: The metalloprotease ADAM17 emerged as the main sheddase of several cytokines and cytokine receptors. Results: The acidophilic kinase PLK2 interacts with and phosphorylates ADAM17 in mammalian cells. Conclusion: PLK2 represents a novel cellular interaction partner of ADAM17 modulating its activity. Significance: Regulation of ADAM17 activity is essential for inflammatory responses. ADAM17 (a disintegrin and metalloprotease 17) controls pro- and anti-inflammatory signaling events by promoting ectodomain shedding of cytokine precursors and cytokine receptors. Despite the well documented substrate repertoire of ADAM17, little is known about regulatory mechanisms, leading to substrate recognition and catalytic activation. Here we report a direct interaction of the acidophilic kinase Polo-like kinase 2 (PLK2, also known as SNK) with the cytoplasmic portion of ADAM17 through the C-terminal noncatalytic region of PLK2 containing the Polo box domains. PLK2 activity leads to ADAM17 phosphorylation at serine 794, which represents a novel phosphorylation site. Activation of ADAM17 by PLK2 results in the release of pro-TNFα and TNF receptors from the cell surface, and pharmacological inhibition of PLK2 leads to down-regulation of LPS-induced ADAM17-mediated shedding on primary macrophages and dendritic cells. Importantly, PLK2 expression is up-regulated during inflammatory conditions increasing ADAM17-mediated proteolytic events. Our findings suggest a new role for PLK2 in the regulation of inflammatory diseases by modulating ADAM17 activity.


Cell Reports | 2016

Epithelial IL-23R Signaling Licenses Protective IL-22 Responses in Intestinal Inflammation

Konrad Aden; Ateequr Rehman; Maren Falk-Paulsen; Thomas Secher; Jan W. P. Kuiper; Florian Tran; Steffen Pfeuffer; Raheleh Sheibani-Tezerji; Alexandra Breuer; Anne Luzius; Marlene Jentzsch; Robert Häsler; Susanne Billmann-Born; Olga Will; Simone Lipinski; Richa Bharti; Timon E. Adolph; Juan L. Iovanna; Richard S. Blumberg; Stefan Schreiber; Burkhard Becher; Mathias Chamaillard; Arthur Kaser; Philip Rosenstiel

A plethora of functional and genetic studies have suggested a key role for the IL-23 pathway in chronic intestinal inflammation. Currently, pathogenic actions of IL-23 have been ascribed to specific effects on immune cells. Herein, we unveil a protective role of IL-23R signaling. Mice deficient in IL-23R expression in intestinal epithelial cells (Il23R(ΔIEC)) have reduced Reg3b expression, show a disturbed colonic microflora with an expansion of flagellated bacteria, and succumb to DSS colitis. Surprisingly, Il23R(ΔIEC) mice show impaired mucosal IL-22 induction in response to IL-23. αThy-1 treatment significantly deteriorates colitis in Il23R(ΔIEC) animals, which can be rescued by IL-22 application. Importantly, exogenous Reg3b administration rescues DSS-treated Il23R(ΔIEC) mice by recruiting neutrophils as IL-22-producing cells, thereby restoring mucosal IL-22 levels. The study identifies a critical barrier-protective immune pathway that originates from, and is orchestrated by, IL-23R signaling in intestinal epithelial cells.


Journal of Bone and Mineral Research | 2014

Binding kinetics of a fluorescently labeled bisphosphonate as a tool for dynamic monitoring of bone mineral deposition in vivo.

Robert J. Tower; Graeme Campbell; Marc Muller; Olga Will; Claus C. Glüer; Sanjay Tiwari

Bone mineral deposition during the modeling of new bone and remodeling of old bone can be perturbed by several pathological conditions, including osteoporosis and skeletal metastases. A site‐specific marker depicting the dynamics of bone mineral deposition would provide insight into skeletal disease location and severity, and prove useful in evaluating the efficacy of pharmacological interventions. Fluorescent labels may combine advantages of both radioisotope imaging and detailed microscopic analyses. The purpose of this study was to determine if the fluorescent bisphosphonate OsteoSense could detect localized changes in bone mineral deposition in established mouse models of accelerated bone loss (ovariectomy) (OVX) and anabolic bone gain resulting from parathyroid hormone (PTH) treatment. We hypothesized that the early rate of binding, as well as the total amount of bisphosphonate, which binds over long periods of time, could be useful in evaluating changes in bone metabolism. Evaluation of the kinetic uptake of bisphosphonates revealed a significant reduction in both the rate constant and plateau binding after OVX, whereas treatment with PTH resulted in a 36‐fold increase in the bisphosphonate binding rate constant compared with untreated OVX controls. Localization of bisphosphonate binding revealed initial binding at sites of ossification adjacent to the growth plate and, to a lesser extent, along more distal trabecular and cortical elements. Micro‐computed tomography (CT) was used to confirm that initial bisphosphonate binding is localized to sites of low tissue mineral density, associated with new bone mineral deposition. Our results suggest monitoring binding kinetics based on fluorescently labeled bisphosphonates represents a highly sensitive, site‐specific method for monitoring changes in bone mineral deposition with the potential for translation into human applications in osteoporosis and bone metastatic processes and their treatment.


PLOS ONE | 2016

Alterations of the Blood-Brain Barrier and Regional Perfusion in Tumor Development: MRI Insights from a Rat C6 Glioma Model.

Monika Huhndorf; Amir Moussavi; Nadine Kramann; Olga Will; Kirsten Hattermann; Christine Stadelmann; Olav Jansen; Susann Boretius

Objectives Angiogenesis and anti-angiogenetic medications play an important role in progression and therapy of glioblastoma. In this context, in vivo characterization of the blood-brain-barrier and tumor vascularization may be important for individual prognosis and therapy optimization. Methods We analyzed perfusion and capillary permeability of C6-gliomas in rats at different stages of tumor-growth by contrast enhanced MRI and dynamic susceptibility contrast (DSC) MRI at 7 Tesla. The analyses included maps of relative cerebral blood volume (CBV) and signal recovery derived from DSC data over a time period of up to 35 days after tumor cell injections. Results In all rats tumor progression was accompanied by temporal and spatial changes in CBV and capillary permeability. A leakage of the blood-brain barrier (slow contrast enhancement) was observed as soon as the tumor became detectable on T2-weighted images. Interestingly, areas of strong capillary permeability (fast signal enhancement) were predominantly localized in the center of the tumor. In contrast, the tumor rim was dominated by an increased CBV and showed the highest vessel density compared to the tumor center and the contralateral hemisphere as confirmed by histology. Conclusion Substantial regional differences in the tumor highlight the importance of parameter maps in contrast or in addition to region-of-interest analyses. The data vividly illustrate how MRI including contrast-enhanced and DSC-MRI may contribute to a better understanding of tumor development.


OncoImmunology | 2018

The hepatic microenvironment essentially determines tumor cell dormancy and metastatic outgrowth of pancreatic ductal adenocarcinoma

Lennart Lenk; Maren Pein; Olga Will; Beatriz Gomez; Fabrice Viol; Charlotte Hauser; Jan-Hendrik Egberts; Jan-Paul Gundlach; Ole Helm; Sanjay Tiwari; Ralf Weiskirchen; Stefan Rose-John; Christoph Röcken; Wolfgang Mikulits; Patrick Wenzel; Günter Schneider; Dieter Saur; Susanne Sebens

ABSTRACT Pancreatic ductal adenocarcinoma (PDAC) is often diagnosed when liver metastases already emerged. This study elucidated the impact of hepatic stromal cells on growth behavior of premalignant and malignant pancreatic ductal epithelial cells (PDECs). Liver sections of tumor-bearing KPC mice comprised micrometastases displaying low proliferation located in an unobtrusive hepatic microenvironment whereas macrometastases containing more proliferating cells were surrounded by hepatic myofibroblasts (HMFs). In an age-related syngeneic PDAC mouse model livers with signs of age-related inflammation exhibited significantly more proliferating disseminated tumor cells (DTCs) and micrometastases despite comparable primary tumor growth and DTC numbers. Hepatic stellate cells (HSC), representing a physiologic liver stroma, promoted an IL-8 mediated quiescence-associated phenotype (QAP) of PDECs in coculture. QAP included flattened cell morphology, Ki67-negativity and reduced proliferation, elevated senescence-associated β galactosidase activity and diminished p-Erk/p-p38-ratio. In contrast, proliferation of PDECs was enhanced by VEGF in the presence of HMF. Switching the micromilieu from HSC to HMF or blocking VEGF reversed QAP in PDECs. This study demonstrates how HSCs induce and maintain a reversible QAP in disseminated PDAC cells, while inflammatory HMFs foster QAP reversal and metastatic outgrowth. Overall, the importance of the hepatic microenvironment in induction and reversal of dormancy during PDAC metastasis is emphasized.


International Journal of Nanomedicine | 2016

Increased survival rate by local release of diclofenac in a murine model of recurrent oral carcinoma

Olga Will; Nicolai Purcz; Athena Chalaris; Carola Heneweer; Susann Boretius; Larissa Purcz; Lila Nikkola; Nureddin Ashammakhi; Holger Kalthoff; Claus-Christian Glüer; Jörg Wiltfang; Yahya Açil; Sanjay Tiwari

Despite aggressive treatment with radiation and combination chemotherapy following tumor resection, the 5-year survival rate for patients with head and neck cancer is at best only 50%. In this study, we examined the therapeutic potential of localized release of diclofenac from electrospun nanofibers generated from poly(D,L-lactide-co-glycolide) polymer. Diclofenac was chosen since anti-inflammatory agents that inhibit cyclooxygenase have shown great potential in their ability to directly inhibit tumor growth as well as suppress inflammation-mediated tumor growth. A mouse resection model of oral carcinoma was developed by establishing tumor growth in the oral cavity by ultrasound-guided injection of 1 million SCC-9 cells in the floor of the mouth. Following resection, mice were allocated into four groups with the following treatment: 1) no treatment, 2) implanted scaffolds without diclofenac, 3) implanted scaffolds loaded with diclofenac, and 4) diclofenac given orally. Small animal ultrasound and magnetic resonance imaging were utilized for longitudinal determination of tumor recurrence. At the end of 7 weeks following tumor resection, 33% of mice with diclofenac-loaded scaffolds had a recurrent tumor, in comparison to 90%–100% of the mice in the other three groups. At this time point, mice with diclofenac-releasing scaffolds showed 89% survival rate, while the other groups showed survival rates of 10%–25%. Immunohistochemical staining of recurrent tumors revealed a near 10-fold decrease in the proliferation marker Ki-67 in the tumors derived from mice with diclofenac-releasing scaffolds. In summary, the local application of diclofenac in an orthotopic mouse tumor resection model of oral cancer reduced tumor recurrence with significant improvement in survival over a 7-week study period following tumor resection. Local drug release of anti-inflammatory agents should be investigated as a therapeutic option in the prevention of tumor recurrence in oral squamous carcinoma.


PLOS ONE | 2013

Metabolic Signature of Electrosurgical Liver Dissection

Witigo von Schönfels; Oliver von Kampen; E. Patsenker; Felix Stickel; Bodo Schniewind; Sebastian Hinz; Markus Ahrens; Katharina Balschun; Jan-Hendrik Egberts; Klaus Richter; Andreas Landrock; Bence Sipos; Olga Will; Patrizia Huebbe; Stefan Schreiber; Michael Nothnagel; Christoph Röcken; Gerald Rimbach; Thomas Becker; Jochen Hampe; Clemens Schafmayer

Background and Aims High frequency electrosurgery has a key role in the broadening application of liver surgery. Its molecular signature, i.e. the metabolites evolving from electrocauterization which may inhibit hepatic wound healing, have not been systematically studied. Methods Human liver samples were thus obtained during surgery before and after electrosurgical dissection and subjected to a two-stage metabolomic screening experiment (discovery sample: N = 18, replication sample: N = 20) using gas chromatography/mass spectrometry. Results In a set of 208 chemically defined metabolites, electrosurgical dissection lead to a distinct metabolic signature resulting in a separation in the first two dimensions of a principal components analysis. Six metabolites including glycolic acid, azelaic acid, 2-n-pentylfuran, dihydroactinidiolide, 2-butenal and n-pentanal were consistently increased after electrosurgery meeting the discovery (p<2.0×10−4) and the replication thresholds (p<3.5×10−3). Azelaic acid, a lipid peroxidation product from the fragmentation of abundant sn-2 linoleoyl residues, was most abundant and increased 8.1-fold after electrosurgical liver dissection (preplication = 1.6×10−4). The corresponding phospholipid hexadecyl azelaoyl glycerophosphocholine inhibited wound healing and tissue remodelling in scratch- and proliferation assays of hepatic stellate cells and cholangiocytes, and caused apoptosis dose-dependently in vitro, which may explain in part the tissue damage due to electrosurgery. Conclusion Hepatic electrosurgery generates a metabolic signature with characteristic lipid peroxidation products. Among these, azelaic acid shows a dose-dependent toxicity in liver cells and inhibits wound healing. These observations potentially pave the way for pharmacological intervention prior liver surgery to modify the metabolic response and prevent postoperative complications.


Oncotarget | 2018

Liver metastasis of pancreatic Cancer: the hepatic microenvironment impacts differentiation and self-renewal capacity of pancreatic ductal epithelial cells

Hendrike Knaack; Lennart Lenk; Lisa-Marie Philipp; Lauritz Miarka; Sascha Rahn; Fabrice Viol; Charlotte Hauser; Jan-Hendrik Egberts; Jan-Paul Gundlach; Olga Will; Sanjay Tiwari; Wolfgang Mikulits; Udo Schumacher; Jan G Hengstler; Susanne Sebens

Pancreatic ductal adenocarcinoma (PDAC) is often diagnosed at advanced stages with the liver as the main site of metastases. The hepatic microenvironment has been shown to determine outgrowth of liver metastases. Cancer stem cells (CSCs) are essential for initiation and maintenance of tumors and acquisition of CSC-properties has been linked to Epithelial-Mesenchymal-Transition. Thus, this study aimed at elucidating whether and how the hepatic microenvironment impacts stemness and differentiation of disseminated pancreatic ductal epithelial cells (PDECs). Culture of premalignant H6c7-kras and malignant Panc1 PDECs together with hepatocytes and hepatic stellate cells (HSC) promoted self-renewal capacity of both PDEC lines. This was indicated by higher colony formation compared to cells cocultured with hepatocytes and hepatic myofibroblasts. Different Panc1 colony types derived from an HSC-enriched coculture were expanded and characterized revealing that holoclones exhibited an enhanced colony formation ability, elevated and exclusive expression of the CSC-marker Nestin and a more pronounced mesenchymal phenotype compared to paraclones. Moreover, Panc1 holoclone cells showed an increased tumorigenic potential in vivo leading to formation of undifferentiated tumors in 7/10 animals, while inoculation of paraclone cells only led to formation of tumors in 2/10 animals being smaller in number and size. Holoclone tumors were characterized by elevated expression of mesenchymal markers, complete loss of E-cadherin expression and high expression of Nestin. Finally, Etanercept-mediated TNF-α blocking partly reversed the mesenchymal CSC-phenotype of Panc1 holoclone cells. Overall, these data provide evidence that the hepatic microenvironment determines stemness and differentiation of PDECs, thereby substantially contributing to liver metastases of PDAC.


Laboratory Animals | 2017

Longitudinal micro-computed tomography monitoring of progressive liver regeneration in a mouse model of partial hepatectomy.

Olga Will; Timo Damm; Graeme Campbell; Witigo von Schönfells; Yahya Açil; Marcus Will; Athena Chalaris-Rissmann; Mustafa Ayna; Claudia Drucker; Claus-Christian Glüer

The partial hepatectomy (PH) model is widely used to study liver regeneration. Currently, the extent of regeneration is analyzed by measuring the weight of the liver post-mortem or by magnetic resonance imaging. In this study we aimed to determine whether liver volume gain can be accurately measured using micro-computed tomography (microCT). Approximately 42% of the liver was removed by ligation in C57BL/6 N mice. Mice were divided into two study groups. In group 1 conventional characterization of liver hyperplasia was performed by weighing the liver post-mortem. In group 2, liver volume gain was determined by microCT volume estimation. MicroCT results showed equivalent regeneration rates compared with the conventional method without the need to mathematically determine initial liver weights before PH. This parameter is strongly influenced by the age, strain and sex of the mice. In addition non-invasive microCT determination of volume gain over multiple time-points using the same animal reduces the number of animals needing to be used (in line with the 3R principle of replacement, reduction and refinement).

Collaboration


Dive into the Olga Will's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert J. Tower

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge