Olga Yarygina
Columbia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olga Yarygina.
Journal of Neurochemistry | 2005
Robert M. Silva; Vincent Ries; Tinmarla F. Oo; Olga Yarygina; Vernice Jackson-Lewis; Elizabeth J. Ryu; Phoebe D. Lu; Stefan J. Marciniak; David Ron; Serge Przedborski; Nikolai Kholodilov; Lloyd A. Greene; Robert E. Burke
There is increasing evidence that neuron death in neurodegenerative diseases, such as Parkinsons disease, is due to the activation of programmed cell death. However, the upstream mediators of cell death remain largely unknown. One approach to the identification of upstream mediators is to perform gene expression analysis in disease models. Such analyses, performed in tissue culture models induced by neurotoxins, have identified up‐regulation of CHOP/GADD153, a transcription factor implicated in apoptosis due to endoplasmic reticulum stress or oxidative injury. To evaluate the disease‐related significance of these findings, we have examined the expression of CHOP/GADD153 in neurotoxin models of parkinsonism in living animals. Nuclear expression of CHOP protein is observed in developmental and adult models of dopamine neuron death induced by intrastriatal injection of 6‐hydroxydopamine (6OHDA) and in models induced by 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP). CHOP is a mediator of neuron death in the adult 60HDA model because a null mutation results in a reduction in apoptosis. In the chronic MPTP model, however, while CHOP is robustly expressed, the null mutation does not protect from the loss of neurons. We conclude that the role of CHOP depends on the nature of the toxic stimulus. For 6OHDA, an oxidative metabolite of dopamine, it is a mediator of apoptotic death.
The Journal of Neuroscience | 2011
Hsiao Chun Cheng; Sang Ryong Kim; Tinmarla F. Oo; Tatyana Kareva; Olga Yarygina; Margarita Rzhetskaya; Chuansong Wang; Matthew J. During; Zsolt Talloczy; Keiji Tanaka; Masaaki Komatsu; Kazuto Kobayashi; Hideyuki Okano; Nikolai Kholodilov; Robert E. Burke
Axon degeneration is a hallmark of neurodegenerative diseases, including Alzheimers disease and Parkinsons disease. Such degeneration is not a passive event but rather an active process mediated by mechanisms that are distinct from the canonical pathways of programmed cell death that mediate destruction of the cell soma. Little is known of the diverse mechanisms involved, particularly those of retrograde axon degeneration. We have previously observed in living animal models of degeneration in the nigrostriatal projection that a constitutively active form of the kinase, myristoylated Akt (Myr-Akt), demonstrates an ability to suppress programmed cell death and preserve the soma of dopamine neurons. Here, we show in both neurotoxin and physical injury (axotomy) models that Myr-Akt is also able to preserve dopaminergic axons due to suppression of acute retrograde axon degeneration. This cellular phenotype is associated with increased mammalian target of rapamycin (mTor) activity and can be recapitulated by a constitutively active form of the small GTPase Rheb, an upstream activator of mTor. Axon degeneration in these models is accompanied by the occurrence of macroautophagy, which is suppressed by Myr-Akt. Conditional deletion of the essential autophagy mediator Atg7 in adult mice also achieves striking axon protection in these acute models of retrograde degeneration. The protection afforded by both Myr-Akt and Atg7 deletion is robust and lasting, because it is still observed as protection of both axons and dopaminergic striatal innervation weeks after injury. We conclude that acute retrograde axon degeneration is regulated by Akt/Rheb/mTor signaling pathways.
Annals of Neurology | 2011
Sang Ryong Kim; Xiqun Chen; Tinmarla F. Oo; Tatyana Kareva; Olga Yarygina; Chuansong Wang; Matthew J. During; Nikolai Kholodilov; Robert E. Burke
A prevailing concept in neuroscience has been that the adult mammalian central nervous system is incapable of restorative axon regeneration. Recent evidence, however, has suggested that reactivation of intrinsic cellular programs regulated by protein kinase B (Akt)/mammalian target of rapamycin (mTor) signaling may restore this ability.
The Journal of Neuroscience | 2004
Nikolai Kholodilov; Olga Yarygina; Tinmarla F. Oo; Hui Zhang; David Sulzer; William T. Dauer; Robert E. Burke
Glial cell line-derived neurotrophic factor (GDNF) has been shown to protect and restore dopamine (DA) neurons in injury models and is being evaluated for the treatment of Parkinsons disease. Nevertheless, little is known of its physiological role. We have shown that GDNF suppresses apoptosis in DA neurons of the substantia nigra (SN) postnatally both in vitro and during their first phase of natural cell death in vivo. Furthermore, intrastriatal injection of neutralizing antibodies augments cell death, suggesting that endogenous GDNF plays a role as a target-derived factor. Such a role would predict that overexpression of GDNF in striatum would increase the surviving number of SN DA neurons. To test this hypothesis, we used the tetracycline-dependent transcription activator (tTA)/tTA-responsive promoter system to create mice that overexpress GDNF selectively in the striatum, cortex, and hippocampus. These mice demonstrate an increased number of SN DA neurons after the first phase of natural cell death. However, this increase does not persist into adulthood. As adults, these mice also do not have increased dopaminergic innervation of the striatum. They do, however, demonstrate increased numbers of ventral tegmental area (VTA) neurons and increased innervation of the cortex. This morphologic phenotype is associated with an increased locomotor response to amphetamine. We conclude that striatal GDNF is necessary and sufficient to regulate the number of SN DA neurons surviving the first phase of natural cell death, but it is not sufficient to increase their final adult number. GDNF in VTA targets, however, is sufficient to regulate the adult number of DA neurons.
Molecular Therapy | 2012
Sang Ryong Kim; Tatyana Kareva; Olga Yarygina; Nikolai Kholodilov; Robert E. Burke
There are currently no therapies that provide either protection or restoration of neuronal function for adult-onset neurodegenerative diseases such as Parkinsons disease (PD). Many clinical efforts to provide such benefits by infusion of neurotrophic factors have failed, in spite of robust effects in preclinical assessments. One important reason for these failures is the difficulty, due to diffusion limits, of providing these protein molecules in sufficient amounts to the intended cellular targets in the central nervous system. This challenge suggests an alternative approach, that of viral vector transduction to directly activate the intracellular signaling pathways that mediate neurotrophic effects. To this end we have investigated the ability of a constitutively active form of the GTPase Rheb, an important activator of mammalian target of rapamycin (mTor) signaling, to mediate neurotrophic effects in dopamine neurons of the substantia nigra (SN), a population of neurons affected in PD. We find that constitutively active hRheb(S16H) induces many neurotrophic effects in mice, including abilities to both preserve and restore the nigrostriatal dopaminergic axonal projections in a highly destructive neurotoxin model. We conclude that direct viral vector transduction of vulnerable neuronal populations to activate intracellular neurotrophic signaling pathways offers promise for the treatment of neurodegenerative disease.
Journal of Neurochemistry | 2001
Michael Neystat; Margarita Rzhetskaya; Tinmarla F. Oo; Nikolai Kholodilov; Olga Yarygina; Alexandria Wilson; Bassem F. El-Khodor; Robert E. Burke
Cyclin‐dependent kinase 5 is predominantly expressed in postmitotic neurons and plays a role in neurite elongation during development. It has also been postulated to play a role in apoptosis in a variety of cells, including neurons, but little is known about the generality and functional significance of cdk5 expression in neuronal apoptosis in living brain. We have therefore examined its expression and that of its known activators, p35, p39 and p67, in models of induced apoptosis in neurons of the substantia nigra. We find that cdk5 is expressed in apoptotic profiles following intrastriatal injection of 6‐hydroxydopamine and axotomy. It is expressed exclusively in profiles which are in late morphologic stages of apoptosis. In these late stages, derivation of the profiles from neurons, and localization of expression to the nucleus, can be demonstrated by co‐labeling with a neuron‐specific nuclear marker, NeuN. In another model of induced apoptotic death in nigra, produced by developmental striatal lesion, kinase activity increases in parallel with cell death. While mRNAs for all three cdk5 activators are expressed in nigra during development, only p35 protein is expressed in apoptotic profiles. We conclude that cdk5/p35 expression is a general feature of apoptotic neuron death in substantia nigra neurons in vivo.
Developmental Brain Research | 2001
Bassem F. El-Khodor; Nikolai Kholodilov; Olga Yarygina; Robert E. Burke
The proteasome is a large protease complex that recognizes, unfolds and degrades ubiquitinated proteins. Evidence is now accumulating that the ubiquitin-proteasome system may play an important role in neuronal apoptosis. However, little is known about the involvement of the proteasome in neuronal death in vivo, and there has been no prior analysis of the developmental expression of proteasome subunits in brain during periods of natural and inducible apoptotic death. We therefore studied the mRNA expression levels, using Northern analysis, of a subunit from each of the three key components of the proteasome in the rat mesencephalon from E21 through development and in adulthood. We measured mRNA expression for RC6 (a subunit of 20S), p112 (a subunit of 19S) and PA28-alpha (a subunit of 11S). The expression of PA28-alpha in rat mesencephalon was highest at the earliest times studied, and then decreased at PND 21, 28 and adult, in comparison to E21 (P<0.05) and PND 2, 4 and 7 (P<0.01). The expression of RC6 was lower in adult in comparison to PND 2, 4 and 21 (P<0.05) and PND 14 (P<0.01). There were no significant differences in the mRNA levels of p112 at various times studied. In situ hybridization at PND 7 indicated that all the subunits studied are particularly abundant in the SNpc. Thus, PA28-alpha and RC6 are developmentally regulated, and they may therefore play a role in developmental cell death or differentiation in neurons of the SN.
Journal of Neurochemistry | 2003
Anindita Ganguly; Tinmarla F. Oo; Margarita Rzhetskaya; Robert Pratt; Olga Yarygina; Takashi Momoi; Nikolai Kholodilov; Robert E. Burke
There is much evidence that the kinase cascade which leads to the phosphorylation of c‐jun plays an important signaling role in the mediation of programmed cell death. We have previously shown that c‐jun is phosphorylated in a model of induced apoptotic death in dopamine neurons of the substantia nigra in vivo. To determine the generality and functional significance of this response, we have examined c‐jun phosphorylation and the effect on cell death of a novel mixed lineage kinase inhibitor, CEP11004, in the 6‐hydroxydopamine model of induced apoptotic death in dopamine neurons. We found that expression of total c‐jun and Ser73‐phosphorylated c‐jun is increased in this model and both colocalize with apoptotic morphology. CEP11004 suppresses apoptotic death to levels of 44 and 58% of control values at doses of 1.0 and 3.0 mg/kg, respectively. It also suppresses, to approximately equal levels, the number of profiles positive for the activated form of capase 9. CEP11004 markedly suppresses striatal dopaminergic fiber loss in these models, to only 22% of control levels. We conclude that c‐jun phosphorylation is a general feature of apoptosis in living dopamine neurons and that the mixed lineage kinases play a functional role as up‐stream mediators of cell death in these neurons.
Molecular and Cellular Neuroscience | 2009
Tinmarla F. Oo; Deanna M. Marchionini; Olga Yarygina; Paul D. O'Leary; Richard A. Hughes; Nikolai Kholodilov; Robert E. Burke
Brain-derived neurotrophic factor (BDNF) was the first purified molecule identified to directly support the development of mesencephalic dopamine neurons. However, its physiologic role has remained unknown. Based on patterns of expression, it is unlikely to serve as a target-derived neurotrophic factor, but it may instead act locally in the mesencephalon, either released by afferent projections, or in autocrine fashion. To assess a possible local role, we blocked BDNF signaling in the substantia nigra (SN) of postnatal rats by injection of either neutralizing antibodies or a peptide antagonist. These treatments increased the magnitude of developmental cell death in the SN, indicating that endogenous local BDNF does play a regulatory role. However, we also find that elimination of BDNF in brain throughout postnatal development in BDNF(fl/fl):Nestin-Cre mice has no effect on the adult number of SN dopamine neurons. We postulate that other forms of trophic support may compensate for the elimination of BDNF during early development. Although the number of SN dopamine neurons is unchanged, their organization is disrupted. We conclude that BDNF plays a physiologic role in the postnatal development of SN dopamine neurons.
eLife | 2016
Joanna M. Dragich; Takaaki Kuwajima; Megumi Hirose-Ikeda; Michael S Yoon; Evelien Eenjes; Joan R Bosco; Leora M. Fox; Alf Håkon Lystad; Tinmarla F. Oo; Olga Yarygina; Tomohiro Mita; Satoshi Waguri; Yoshinobu Ichimura; Masaaki Komatsu; Anne Simonsen; Robert E. Burke; Carol A. Mason; Ai Yamamoto
The regulation of protein degradation is essential for maintaining the appropriate environment to coordinate complex cell signaling events and to promote cellular remodeling. The Autophagy linked FYVE protein (Alfy), previously identified as a molecular scaffold between the ubiquitinated cargo and the autophagic machinery, is highly expressed in the developing central nervous system, indicating that this pathway may have yet unexplored roles in neurodevelopment. To examine this possibility, we used mouse genetics to eliminate Alfy expression. We report that this evolutionarily conserved protein is required for the formation of axonal tracts throughout the brain and spinal cord, including the formation of the major forebrain commissures. Consistent with a phenotype reflecting a failure in axon guidance, the loss of Alfy in mice disrupts localization of glial guidepost cells, and attenuates axon outgrowth in response to Netrin-1. These findings further support the growing indication that macroautophagy plays a key role in the developing CNS. DOI: http://dx.doi.org/10.7554/eLife.14810.001