Olga Zolochevska
University of Texas Medical Branch
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olga Zolochevska.
Stem Cells and Development | 2012
Olga Zolochevska; Gang Yu; Jeffrey M. Gimble; Marxa L. Figueiredo
Adipose-derived stromal/mesenchymal stem cells (ASC) have gained interest as promising tools for delivering cancer therapy. Adipose tissue can be obtained readily in amounts sufficient for ASC isolation, which can be expanded rapidly, allowing its use at low passage numbers, and can be transduced by viral and nonviral means. Our goal was to examine the potential of ASC to deliver cytokine gene therapies melanoma differentiation associated gene-7 (MDA-7) or pigment epithelial-derived factor (PEDF) to cancer cells. These novel cytokines are a potent proapoptotic and an antiangiogenesis mediator, respectively, with potential as antitumor agents. Expression of cytokine therapies did not adversely affect ASC biology, and these cells were still able to differentiate and retain normal viability. The ASC cytokine therapies were efficient in reducing tumor cell growth in coculture and also in suppressing in vitro angiogenesis phenotypes. We also observed that ASC retained their innate ability to migrate toward tumor cells in coculture, and this ability could be blocked by inhibition of CXCR4 signaling. The ASC were found to be nontumorigenic in vitro using a soft agar assay, as well as in vivo, utilizing 2 prostate cancer xenograft models. The ASC-MDA7 only reduced tumor growth in the TRAMP-C2-Ras (TC2Ras) prostate cancer model. The ASC-PEDF, however, reduced growth in both the TC2Ras and the PC3 highly aggressive prostate cancer models, and it was able to completely prevent prostate tumor establishment in vivo. In conclusion, ASC expressing PEDF and MDA7 could effectively reduce prostate tumor growth in vivo, suggesting ASC-cytokine therapies might have translational applications, especially the PEDF modality.
Molecular and Cellular Endocrinology | 2011
Piper L. Nelson; Olga Zolochevska; Marxa L. Figueiredo; A. Soliman; Walter H. Hsu; Ji-Ming Feng; Hanjie Zhang; Henrique Cheng
Elevation in the intracellular Ca(2+) concentration stimulates glucagon secretion from pancreatic α-cells. The Transient Receptor Potential Melastatin 4 channel (TRPM4) is critical for Ca(2+) signaling. However, its role in glucagon secreting α-cells has not been investigated. We identified TRPM4 gene expression and protein in the αTC1-6 cell line using RT-PCR and immunocytochemistry. Furthermore, we performed a detailed biophysical characterization of the channel using the patch-clamp technique to confirm that currents typical for TRPM4 were present in αTC1-6 cells. To investigate TRPM4 function, we generated a stable knockdown clone using shRNA and a lentiviral vector. Inhibition of TRPM4 significantly reduced the responses to different agonists during Ca(2+) imaging analysis with Fura-2AM. The reduction in the magnitude of Ca(2+) signals resulted in decreased glucagon secretion. These results suggested that depolarization by TRPM4 may play an important role in controlling glucagon secretion from α-cells and perhaps glucose homeostasis.
The Prostate | 2009
Olga Zolochevska; Marxa L. Figueiredo
We evaluated the effect of expressing the cell cycle regulator cdk2ap1, downregulated in prostate cancer cell lines, in inhibiting prostate cancer cell growth.
Scientific Reports | 2016
David Briley; Valeria Ghirardi; Randy Woltjer; Alicia Renck; Olga Zolochevska; Giulio Taglialatela; Maria Adelaide Micci
Rare individuals remain cognitively intact despite the presence of neuropathology usually associated with fully symptomatic Alzheimer’s disease (AD), which we refer to as Non-Demented with Alzheimer’s disease Neuropathology (NDAN). Understanding the involved mechanism(s) of their cognitive resistance may reveal novel strategies to treat AD-related dementia. In the pursuit of this goal, we determined the number of hippocampal neural stem cells (NSCs) and investigated the expression of several miRNAs in NDAN and AD subjects. Laser-capture microdissection of autopsy human hippocampus DG and qRT-PCR miRNA analyses were combined with immunofluorescence in this study. The number of SOX2+ NSCs in the DG was significantly increased in NDAN individuals as compared to AD subjects. Further, the prevalence of SOX2+ NSCs was found to correlate with cognitive capacity. Neurogenesis-regulating miRNAs were decreased in NDAN individuals as compared to AD patients. An increased number of NSCs and new neurons in NDAN individuals is associated with a unique expression of regulating miRNAs and strongly support a role of neurogenesis in mediating, in part, the ability of these individuals to resist the pathological burden of AD.
The Prostate | 2011
Olga Zolochevska; Marxa L. Figueiredo
We examined whether the novel cell‐cycle regulator cdk2‐associated protein 1 (p12cdk2ap1 or cdk2ap1), recently shown to regulate prostate cancer cell cycle and apoptosis, could have the capacity to reduce invasiveness and/or reduce malignant biological interactions between prostate cancer and bone cells. We also examined whether combining two cell‐cycle arrest stimuli, cdk2ap1 plus bicalutamide (or casodex, CDX), could help enhance inhibition of prostate cancer cell phenotypes.
Oral Oncology | 2009
Olga Zolochevska; Marxa L. Figueiredo
We evaluated the effect of expressing the cell cycle regulator cdk2ap1 in epithelial or stromal cell compartments to reduce SCC growth in vitro and in vivo. Cell-autonomous and/or non-cell-autonomous expression of cdk2ap1 reduced tumor growth and invasion and altered cell cycle, adhesion, invasion, angiogenesis, and apoptotic gene expression, as assessed by several in vitro phenotype assays, quantitative real-time PCR, and in vivo molecular imaging using a novel three-way xenograft animal model. Our findings suggest that the interactions between cancer cells and fibroblasts that promote abnormal growth can be minimized by expressing cdk2ap1, supporting a novel concept by which tumor/growth suppressor genes can impact tumorigenesis phenotypes from non-cell-autonomous interactions within the tumor microenvironment.
Biomacromolecules | 2014
Sangram S. Parelkar; Rachel Letteri; Delphine Chan-Seng; Olga Zolochevska; Jayne Ellis; Marxa L. Figueiredo; Todd Emrick
The success of nonviral transfection using polymers hinges on efficient nuclear uptake of nucleic acid cargo and overcoming intra- and extracellular barriers. By incorporating PKKKRKV heptapeptide pendent groups as nuclear localization signals (NLS) on a polymer backbone, we demonstrate protein expression levels higher than those obtained from JetPEI and Lipofectamine 2000, the latter being notorious for coupling high transfection efficiency with cytotoxicity. The orientation of the NLS peptide grafts markedly affected transfection performance. Polymers with the sequence attached to the backbone from the valine residue achieved a level of nuclear translocation higher than the levels of those having the NLS groups attached in the opposite orientation. The differences in nuclear localization and DNA complexation strength between the two orientations correlated with a striking difference in protein expression, both in cell culture and in vivo. Polyplexes formed from these comb polymer structures exhibited transfection efficiencies superior to those of Lipofectamine 2000 but with greatly reduced toxicity. Moreover, these novel polymers, when administered by intramuscular ultrasound-mediated delivery, allowed a high level of reporter gene expression in mice, demonstrating their therapeutic promise in vivo.
Biochemical Journal | 2014
Tran Doan Ngoc Tran; Olga Zolochevska; Marxa L. Figueiredo; Hai Wang; Li Jun Yang; Jeffrey M. Gimble; Shaomian Yao; Henrique Cheng
Intracellular Ca2+ oscillations are frequently observed during stem cell differentiation, and there is evidence that it may control adipogenesis. The transient receptor potential melastatin 4 channel (TRPM4) is a key regulator of Ca2+ signals in excitable and non-excitable cells. However, its role in human adipose-derived stem cells (hASCs), in particular during adipogenesis, is unknown. We have investigated TRPM4 in hASCs and examined its impact on histamine-induced Ca2+ signalling and adipogenesis. Using reverse transcription (RT)-PCR, we have identified TRPM4 gene expression in hASCs and human adipose tissue. Electrophysiological recordings revealed currents with the characteristics of those reported for the channel. Furthermore, molecular suppression of TRPM4 with shRNA diminished the Ca2+ signals generated by histamine stimulation, mainly via histamine receptor 1 (H1) receptors. The increases in intracellular Ca2+ were due to influx via voltage-dependent Ca2+ channels (VDCCs) of the L-type (Ca(v)1.2) and release from the endoplasmic reticulum. Inhibition of TRPM4 by shRNA inhibited adipogenesis as indicated by the reduction in lipid droplet accumulation and adipocyte gene expression. These results suggest that TRPM4 is an important regulator of Ca2+ signals generated by histamine in hASCs and is required for adipogenesis.
Journal of Cellular Physiology | 2013
Olga Zolochevska; Adriana O. Diaz-Quiñones; Jayne Ellis; Marxa L. Figueiredo
Prostate cancer is frequently associated with bone metastases, where the crosstalk between tumor cells and key cells of the bone microenvironment (osteoblasts, osteoclasts, immune cells) amplifies tumor growth. We have explored the potential of a novel cytokine, interleukin‐27 (IL‐27), for inhibiting this malignant crosstalk, and have examined the effect of autocrine IL‐27 on prostate cancer cell gene expression, as well as the effect of paracrine IL‐27 on gene expression in bone and T cells. In prostate tumor cells, IL‐27 upregulated genes related to its signaling pathway while downregulating malignancy‐related receptors and cytokine genes involved in gp130 signaling, as well as several protease genes. In both undifferentiated and differentiated osteoblasts, IL‐27 modulated upregulation of genes related to its own signaling pathway as well as pro‐osteogenic genes. In osteoclasts, IL‐27 downregulated several genes typically involved in malignancy and also downregulated osteoclastogenesis‐related genes. Furthermore, an osteogenesis‐focused real‐time PCR array revealed a more extensive profile of pro‐osteogenic gene changes in both osteoblasts and osteoclasts. In T‐lymphocyte cells, IL‐27 upregulated several activation‐related genes and also genes related to the IL‐27 signaling pathway and downregulated several genes that could modulate osteoclastogenesis. Overall, our results suggest that IL‐27 may be able to modify interactions between prostate tumor and bone microenvironment cells and thus could be used as a multifunctional therapeutic for restoring bone homeostasis while treating metastatic prostate tumors. J. Cell. Physiol.
Human Gene Therapy | 2013
Olga Zolochevska; Jayne Ellis; Sangram S. Parelkar; Delphine Chan-Seng; Todd Emrick; Jingna Wei; Igor Patrikeev; Massoud Motamedi; Marxa L. Figueiredo
We have examined the role of a novel cytokine, interleukin-27 (IL-27), in mediating interactions between prostate cancer and bone. IL-27 is the most recently characterized member of the family of heterodimeric IL-12-related cytokines and has shown promise in halting tumor growth and mediating tumor regression in several cancer models, including prostate cancer. Prostate cancer is frequently associated with metastases to the bone, where the tumor induces a vicious cycle of communication with osteoblasts and osteoclasts to induce bone lesions, which are a significant cause of pain and skeletal-related events for patients, including a high fracture risk. We describe our findings in the effects of IL-27 gene delivery on prostate cancer cells, osteoblasts, and osteoclasts at different stages of differentiation. We applied the IL-27 gene delivery protocol in vivo utilizing sonoporation (sonodelivery) with the goal of treating and reducing the growth of prostate cancer at a bone metastatic site in vivo. We used a new model of immune-competent prostate adenocarcinoma and characterized the tumor growth reduction, gene expression, and effector cellular profiles. Our results suggest that IL-27 can be effective in reducing tumor growth, can help normalize bone structure, and can promote enhanced accumulation of effector cells in prostate tumors. These results are promising, because they are relevant to developing a novel IL-27-based strategy that can treat both the tumor and the bone, by using this simple and effective sonodelivery method for treating prostate tumor bone metastases.