Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olgica Trenchevska is active.

Publication


Featured researches published by Olgica Trenchevska.


PLOS ONE | 2011

Quantitative Mass Spectrometry Evaluation of Human Retinol Binding Protein 4 and Related Variants

Urban A. Kiernan; David A. Phillips; Olgica Trenchevska; Dobrin Nedelkov

Background Retinol Binding Protein 4 (RBP4) is an exciting new biomarker for the determination of insulin resistance and type 2 diabetes. It is known that circulating RBP4 resides in multiple variants which may provide enhanced clinical utility, but conventional immunoassay methods are blind to such differences. A Mass Spectrometric immunoassay (MSIA) technology that can quantitate total RBP4 as well as individual isoforms may provide an enhanced analysis for this biomarker. Methods RBP4 was isolated and detected from 0.5 uL of human plasma using MSIA technology, for the simultaneous quantification and differentiation of endogenous human RBP4 and its variants. Results The linear range of the assay was 7.81–500 ug/mL, and the limit of detection and limit of quantification were 3.36 ug/mL and 6.52 ug/mL, respectively. The intra-assay CVs were determined to be 5.1% and the inter-assay CVs were 9.6%. The percent recovery of the RBP4-MSIA ranged from 95 – 105%. Method comparison of the RBP4 MSIA vs the Immun Diagnostik ELISA yielded a Passing & Bablok fit of MSIA  = 1.05× ELISA – 3.09, while the Cusum linearity p-value was >0.1 and the mean bias determined by the Altman Bland test was 1.2%. Conclusion The novel RBP4 MSIA provided a fast, accurate and precise quantitative protein measurement as compared to the standard commercially available ELISA. Moreover, this method also allowed for the detection of RBP4 variants that are present in each sample, which may in the future provide a new dimension in the clinical utility of this biomarker.


Proteomics | 2011

Mass spectrometric immunoassay for quantitative determination of transthyretin and its variants

Olgica Trenchevska; Elena Kamcheva; Dobrin Nedelkov

Transthyretin (TTR, or prealbumin) is a tetrameric protein found in plasma and cerebrospinal fluid. Its major role is to transport thyroid hormones (thyroxin‐T4) and retinol (through association with retinol‐binding protein). TTR has been studied extensively due to the great number of point mutations that result in sequence heterogeneity. Many of these variants are associated with pathological conditions that result in extracellular deposition of amyloid fibers in tissues. In this work, we have developed a rapid mass spectrometric immunoassay for determination and quantification of TTR and its variants from human serum and plasma samples. The assay was fully characterized in terms of its precision, linearity and recovery characteristics. The new assay was also compared with a conventional TTR ELISA. Furthermore, we have applied the optimized method to analyze TTR and its modifications in 44 human plasma samples, and in the process optimized a method for TTR proteolytic digestion and identification of point mutations.


Proteome Science | 2011

Targeted quantitative mass spectrometric immunoassay for human protein variants

Olgica Trenchevska; Dobrin Nedelkov

BackgroundPost-translational modifications and genetic variations give rise to protein variants that significantly increase the complexity of the human proteome. Modified proteins also play an important role in biological processes. While sandwich immunoassays are routinely used to determine protein concentrations, they are oblivious to protein variants that may serve as biomarkers with better sensitivity and specificity than their wild-type proteins. Mass spectrometry, coupled to immunoaffinity separations, can provide an efficient mean for simultaneous detection and quantification of protein variants.ResultsPresented here is a mass spectrometric immunoassay method for targeted quantitative proteomics analysis of protein modifications. Cystatin C, a cysteine proteinase inhibitor and a potential marker for several pathological processes, was used as a target analyte. An internal reference standard was incorporated into the assay, serving as a normalization point for cystatin C quantification. The precision, linearity, and recovery characteristics of the assay were established. The new assay was also benchmarked against existing cystatin C ELISA. In application, the assay was utilized to determine the individual concentration of several cystatin C variants across a cohort of samples, demonstrating the ability to fully quantify individual forms of post-translationally modified proteins.ConclusionsThe mass spectrometric immunoassays can find use in quantifying specific protein modifications, either as a part of a specific protein biomarker discovery/rediscovery effort to delineate the role of these variants in the onset of the disease, progression, and response to therapy, or in a more systematic study to delineate and understand human protein diversity.


Methods | 2015

Development of multiplex mass spectrometric immunoassay for detection and quantification of apolipoproteins C-I, C-II, C-III and their proteoforms

Olgica Trenchevska; Matthew R. Schaab; Randall W. Nelson; Dobrin Nedelkov

The impetus for discovery and evaluation of protein biomarkers has been accelerated by recent development of advanced technologies for rapid and broad proteome analyses. Mass spectrometry (MS)-based protein assays hold great potential for in vitro biomarker studies. Described here is the development of a multiplex mass spectrometric immunoassay (MSIA) for quantification of apolipoprotein C-I (apoC-I), apolipoprotein C-II (apoC-II), apolipoprotein C-III (apoC-III) and their proteoforms. The multiplex MSIA assay was fast (∼ 40 min) and high-throughput (96 samples at a time). The assay was applied to a small cohort of human plasma samples, revealing the existence of multiple proteoforms for each apolipoprotein C. The quantitative aspect of the assay enabled determination of the concentration for each proteoform individually. Low-abundance proteoforms, such as fucosylated apoC-III, were detected in less than 20% of the samples. The distribution of apoC-III proteoforms varied among samples with similar total apoC-III concentrations. The multiplex analysis of the three apolipoproteins C and their proteoforms using quantitative MSIA represents a significant step forward toward better understanding of their physiological roles in health and disease.


PLOS ONE | 2014

Parallel Workflow for High-Throughput (>1,000 Samples/Day) Quantitative Analysis of Human Insulin-Like Growth Factor 1 Using Mass Spectrometric Immunoassay

Paul E. Oran; Olgica Trenchevska; Dobrin Nedelkov; Chad R. Borges; Matthew R. Schaab; Douglas S. Rehder; Jason W. Jarvis; Nisha D. Sherma; Luhui Shen; Bryan Krastins; Mary F. Lopez; Dawn C. Schwenke; Randall W. Nelson

Insulin-like growth factor 1 (IGF1) is an important biomarker for the management of growth hormone disorders. Recently there has been rising interest in deploying mass spectrometric (MS) methods of detection for measuring IGF1. However, widespread clinical adoption of any MS-based IGF1 assay will require increased throughput and speed to justify the costs of analyses, and robust industrial platforms that are reproducible across laboratories. Presented here is an MS-based quantitative IGF1 assay with performance rating of >1,000 samples/day, and a capability of quantifying IGF1 point mutations and posttranslational modifications. The throughput of the IGF1 mass spectrometric immunoassay (MSIA) benefited from a simplified sample preparation step, IGF1 immunocapture in a tip format, and high-throughput MALDI-TOF MS analysis. The Limit of Detection and Limit of Quantification of the resulting assay were 1.5 μg/L and 5 μg/L, respectively, with intra- and inter-assay precision CVs of less than 10%, and good linearity and recovery characteristics. The IGF1 MSIA was benchmarked against commercially available IGF1 ELISA via Bland-Altman method comparison test, resulting in a slight positive bias of 16%. The IGF1 MSIA was employed in an optimized parallel workflow utilizing two pipetting robots and MALDI-TOF-MS instruments synced into one-hour phases of sample preparation, extraction and MSIA pipette tip elution, MS data collection, and data processing. Using this workflow, high-throughput IGF1 quantification of 1,054 human samples was achieved in approximately 9 hours. This rate of assaying is a significant improvement over existing MS-based IGF1 assays, and is on par with that of the enzyme-based immunoassays. Furthermore, a mutation was detected in ∼1% of the samples (SNP: rs17884626, creating an A→T substitution at position 67 of the IGF1), demonstrating the capability of IGF1 MSIA to detect point mutations and posttranslational modifications.


Proteome Science | 2014

Mass Spectrometric Immunoassay for the qualitative and quantitative analysis of the cytokine Macrophage Migration Inhibitory Factor (MIF)

Nisha D. Sherma; Chad R. Borges; Olgica Trenchevska; Jason W. Jarvis; Douglas S. Rehder; Paul E. Oran; Randall W. Nelson; Dobrin Nedelkov

BackgroundThe cytokine MIF (Macrophage Migration Inhibitory Factor) has diverse physiological roles and is present at elevated concentrations in numerous disease states. However, its molecular heterogeneity has not been previously investigated in biological samples. Mass Spectrometric Immunoassay (MSIA) may help elucidate MIF post-translational modifications existing in vivo and provide additional clarity regarding its relationship to diverse pathologies.ResultsIn this work, we have developed and validated a fully quantitative MSIA assay for MIF, and used it in the discovery and quantification of different proteoforms of MIF in serum samples, including cysteinylated and glycated MIF. The MSIA assay had a linear range of 1.56-50 ng/mL, and exhibited good precision, linearity, and recovery characteristics. The new assay was applied to a small cohort of human serum samples, and benchmarked against an MIF ELISA assay.ConclusionsThe quantitative MIF MSIA assay provides a sensitive, precise and high throughput method to delineate and quantify MIF proteoforms in biological samples.


Journal of Lipid Research | 2016

Disialylated apolipoprotein C-III proteoform is associated with improved lipids in prediabetes and type 2 diabetes

Juraj Koska; Hussein N. Yassine; Olgica Trenchevska; Shripad Sinari; Dawn C. Schwenke; Frances T. Yen; Dean Billheimer; Randall W. Nelson; Dobrin Nedelkov

The apoC-III proteoform containing two sialic acid residues (apoC-III2) has different in vitro effects on lipid metabolism compared with asialylated (apoC-III0) or the most abundant monosialylated (apoC-III1) proteoforms. Cross-sectional and longitudinal associations between plasma apoC-III proteoforms (by mass spectrometric immunoassay) and plasma lipids were tested in two randomized clinical trials: ACT NOW, a study of pioglitazone in subjects with impaired glucose tolerance (n = 531), and RACED (n = 296), a study of intensive glycemic control and atherosclerosis in type 2 diabetes patients. At baseline, higher relative apoC-III2 and apoC-III2/apoC-III1 ratios were associated with lower triglycerides and total cholesterol in both cohorts, and with lower small dense LDL in the RACED. Longitudinally, changes in apoC-III2/apoC-III1 were inversely associated with changes in triglycerides in both cohorts, and with total and small dense LDL in the RACED. apoC-III2/apoC-III1 was also higher in patients treated with PPAR-γ agonists and was associated with reduced cardiovascular events in the RACED control group. Ex vivo studies of apoC-III complexes with higher apoC-III2/apoC-III1 showed attenuated inhibition of VLDL uptake by HepG2 cells and LPL-mediated lipolysis, providing possible functional explanations for the inverse association between a higher apoC-III2/apoC-III1 and hypertriglyceridemia, proatherogenic plasma lipid profiles, and cardiovascular risk.


PLOS ONE | 2015

Serum amyloid a truncations in type 2 diabetes mellitus.

Hussein N. Yassine; Olgica Trenchevska; Huijuan He; Chad R. Borges; Dobrin Nedelkov; Wendy J. Mack; Naoko Kono; Juraj Koska; Randall W. Nelson

Serum Amyloid A (SAA) is an acute phase protein complex consisting of several abundant isoforms. The N- terminus of SAA is critical to its function in amyloid formation. SAA is frequently truncated, either missing an arginine or an arginine-serine dipeptide, resulting in isoforms that may influence the capacity to form amyloid. However, the relative abundance of truncated SAA in diabetes and chronic kidney disease is not known. Methods Using mass spectrometric immunoassay, the abundance of SAA truncations relative to the native variants was examined in plasma of 91 participants with type 2 diabetes and chronic kidney disease and 69 participants without diabetes. Results The ratio of SAA 1.1 (missing N-terminal arginine) to native SAA 1.1 was lower in diabetics compared to non-diabetics (p = 0.004), and in males compared to females (p<0.001). This ratio was negatively correlated with glycated hemoglobin (r = −0.32, p<0.001) and triglyceride concentrations (r = −0.37, p<0.001), and positively correlated with HDL cholesterol concentrations (r = 0.32, p<0.001). Conclusion The relative abundance of the N-terminal arginine truncation of SAA1.1 is significantly decreased in diabetes and negatively correlates with measures of glycemic and lipid control.


Journal of Proteomics | 2015

Quantitative mass spectrometric immunoassay for the chemokine RANTES and its variants.

Olgica Trenchevska; Nisha D. Sherma; Paul E. Oran; Randall W. Nelson; Dobrin Nedelkov

UNLABELLED The chemokine RANTES plays a key role in inflammation, cell recruitment and T cell activation. RANTES is heterogenic and exists as multiple variants in vivo. Herein we describe the development and characterization of a fully quantitative mass spectrometric immunoassay (MSIA) for analysis of intact RANTES and its proteoforms in human serum and plasma samples. The assay exhibits linearity over a wide concentration range (1.56-200ng/mL), intra- and inter-assay precision with CVs <10%, and good linearity and recovery correlations. The assay was tested in different biological matrices, and it was benchmarked against an existing RANTES ELISA. The new RANTES MSIA was used to analyze RANTES and its proteoforms in a small clinical cohort, revealing the quantitative distribution and frequency of the native and truncated RANTES proteoforms. BIOLOGICAL SIGNIFICANCE In the last two decades, RANTES has been studied extensively due to its association with numerous clinical conditions, including kidney-related, autoimmune, cardiovascular, viral and metabolic pathologies. Although a single gene product, RANTES is expressed in a range of cells and tissues presenting with different endogenously produced variants and PTMs. The structural variety and population diversity that has been identified for RANTES necessitate developing advanced methodologies that can provide insight into the protein heterogeneity and its function and regulation in disease. In this work we present a simple, efficient and high-throughput mass spectrometric immunoassay (MSIA) method for analysis of RANTES proteoforms. RANTES MSIA can detect and analyze RANTES proteoforms and provide an insight into the endogenous protein modifications.


PLOS ONE | 2014

Delineation of concentration ranges and longitudinal changes of human plasma protein variants.

Olgica Trenchevska; David A. Phillips; Randall W. Nelson; Dobrin Nedelkov

Human protein diversity arises as a result of alternative splicing, single nucleotide polymorphisms (SNPs) and posttranslational modifications. Because of these processes, each protein can exists as multiple variants in vivo. Tailored strategies are needed to study these protein variants and understand their role in health and disease. In this work we utilized quantitative mass spectrometric immunoassays to determine the protein variants concentration of beta-2-microglobulin, cystatin C, retinol binding protein, and transthyretin, in a population of 500 healthy individuals. Additionally, we determined the longitudinal concentration changes for the protein variants from four individuals over a 6 month period. Along with the native forms of the four proteins, 13 posttranslationally modified variants and 7 SNP-derived variants were detected and their concentration determined. Correlations of the variants concentration with geographical origin, gender, and age of the individuals were also examined. This work represents an important step toward building a catalog of protein variants concentrations and examining their longitudinal changes.

Collaboration


Dive into the Olgica Trenchevska's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hussein N. Yassine

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Chad R. Borges

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul E. Oran

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aarushi Parekh

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Ambika Ramrakhiani

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge