Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olin D. Liang is active.

Publication


Featured researches published by Olin D. Liang.


Nature Medicine | 2005

Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells

Massimiliano Gnecchi; Huamei He; Olin D. Liang; Luis G. Melo; Fulvio Morello; Hui Mu; Nicolas Noiseux; Lunan Zhang; Richard E. Pratt; Joanne S. Ingwall; Victor J. Dzau

Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells


The FASEB Journal | 2006

Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement

Massimiliano Gnecchi; Huamei He; Nicolas Noiseux; Olin D. Liang; Lunan Zhang; Fulvio Morello; Hui Mu; Luis G. Melo; Richard E. Pratt; Joanne S. Ingwall; Victor J. Dzau

We previously reported that intramyocardial injection of bone marrow‐derived mesenchymal stem cells overexpressing Akt (Akt‐MSCs) inhibits ventricular remodeling and restores cardiac function measured 2 wk after myocardial infarction. Here, we report that the functional improvement occurs in < 72 h. This early remarkable effect cannot be readily attributed to myocardial regeneration from the donor cells. Thus, we hypothesized that paracrine actions exerted by the cells through the release of soluble factors might be important mechanisms of tissue repair and functional improvement after injection of the Akt‐MSCs. Indeed, in the current study we demonstrate that conditioned medium from hypoxic Akt‐MSCs markedly inhibits hypoxia‐induced apoptosis and triggers vigorous spontaneous contraction of adult rat cardiomyocytes in vitro. When injected into infarcted hearts, the Akt‐MSC conditioned medium significantly limits infarct size and improves ventricular function relative to controls. Sup‐port to the paracrine hypothesis is provided by data showing that several genes, coding for factors (VEGF, FGF‐2, HGF, IGF‐I, and TB4) that are potential mediators of the effects exerted by the Akt‐MSC conditioned medium, are significantly up‐regulated in the Akt‐MSCs, particularly in response to hypoxia. Taken together, our data support Akt‐MSC‐mediated para‐crine mechanisms of myocardial protection and functional improvement.‐Gnecchi, M., He, H., Noiseux, N., Liang, O. D., Zhang, L., Morello, F., Mu, H., Melo, L. G., Pratt, R. E., Ingwall, J. S., Dzau, V. J. Evidence supporting paracrine hypothesis for Akt‐modified mes‐enchymal stem cell‐mediated cardiac protection and functional improvement. FASEB J. 20, 661–669 (2006)


American Journal of Respiratory and Critical Care Medicine | 2009

Bone Marrow Stromal Cells Attenuate Lung Injury in a Murine Model of Neonatal Chronic Lung Disease

Muhammad Aslam; Rajiv Baveja; Olin D. Liang; Angeles Fernandez-Gonzalez; Changjin Lee; S. Alex Mitsialis; Stella Kourembanas

RATIONALE Neonatal chronic lung disease, known as bronchopulmonary dysplasia (BPD), remains a serious complication of prematurity despite advances in the treatment of extremely low birth weight infants. OBJECTIVES Given the reported protective actions of bone marrow stromal cells (BMSCs; mesenchymal stem cells) in models of lung and cardiovascular injury, we tested their therapeutic potential in a murine model of BPD. METHODS Neonatal mice exposed to hyperoxia (75% O(2)) were injected intravenously on Day 4 with either BMSCs or BMSC-conditioned media (CM) and assessed on Day 14 for lung morphometry, vascular changes associated with pulmonary hypertension, and lung cytokine profile. MEASUREMENTS AND MAIN RESULTS Injection of BMSCs but not pulmonary artery smooth muscle cells (PASMCs) reduced alveolar loss and lung inflammation, and prevented pulmonary hypertension. Although more donor BMSCs engrafted in hyperoxic lungs compared with normoxic controls, the overall low numbers suggest protective mechanisms other than direct tissue repair. Injection of BMSC-CM had a more pronounced effect than BMSCs, preventing both vessel remodeling and alveolar injury. Treated animals had normal alveolar numbers at Day 14 of hyperoxia and a drastically reduced lung neutrophil and macrophage accumulation compared with PASMC-CM-treated controls. Macrophage stimulating factor 1 and osteopontin, both present at high levels in BMSC-CM, may be involved in this immunomodulation. CONCLUSIONS BMSCs act in a paracrine manner via the release of immunomodulatory factors to ameliorate the parenchymal and vascular injury of BPD in vivo. Our study suggests that BMSCs and factor(s) they secrete offer new therapeutic approaches for lung diseases currently lacking effective treatment.


Circulation | 2011

Early Macrophage Recruitment and Alternative Activation Are Critical for the Later Development of Hypoxia-Induced Pulmonary Hypertension

Eleni Vergadi; Mun Seog Chang; Changjin Lee; Olin D. Liang; Xianlan Liu; Angeles Fernandez-Gonzalez; S. Alex Mitsialis; Stella Kourembanas

Background— Lung inflammation precedes the development of hypoxia-induced pulmonary hypertension (HPH); however, its role in the pathogenesis of HPH is poorly understood. We sought to characterize the hypoxic inflammatory response and to elucidate its role in the development of HPH. We also aimed to investigate the mechanisms by which heme oxygenase-1, an anti-inflammatory enzyme, is protective in HPH. Methods and Results— We generated bitransgenic mice that overexpress human heme oxygenase-1 under doxycycline control in an inducible, lung-specific manner. Hypoxic exposure of mice in the absence of doxycycline resulted in early transient accumulation of monocytes/macrophages in the bronchoalveolar lavage. Alveolar macrophages acquired an alternatively activated phenotype (M2) in response to hypoxia, characterized by the expression of found in inflammatory zone-1, arginase-1, and chitinase-3-like-3. A brief 2-day pulse of doxycycline delayed, but did not prevent, the peak of hypoxic inflammation, and could not protect against HPH. In contrast, a 7-day doxycycline treatment sustained high heme oxygenase-1 levels during the entire period of hypoxic inflammation, inhibited macrophage accumulation and activation, induced macrophage interleukin-10 expression, and prevented the development of HPH. Supernatants from hypoxic M2 macrophages promoted the proliferation of pulmonary artery smooth muscle cells, whereas treatment with carbon monoxide, a heme oxygenase-1 enzymatic product, abrogated this effect. Conclusions— Early recruitment and alternative activation of macrophages in hypoxic lungs are critical for the later development of HPH. Heme oxygenase-1 may confer protection from HPH by effectively modifying the macrophage activation state in hypoxia.


Stem Cells | 2011

Mesenchymal Stromal Cells Expressing Heme Oxygenase‐1 Reverse Pulmonary Hypertension

Olin D. Liang; S. Alex Mitsialis; Mun Seog Chang; Eleni Vergadi; Changjin Lee; Muhammad Aslam; Angeles Fernandez-Gonzalez; Xianlan Liu; Rajiv Baveja; Stella Kourembanas

Pulmonary arterial hypertension (PAH) remains a serious disease, and although current treatments may prolong and improve quality of life, search for novel and effective therapies is warranted. Using genetically modified mouse lines, we tested the ability of bone marrow‐derived stromal cells (mesenchymal stem cells [MSCs]) to treat chronic hypoxia‐induced PAH. Recipient mice were exposed for 5 weeks to normobaric hypoxia (8%–10% O2), MSC preparations were delivered through jugular vein injection and their effect on PAH was assessed after two additional weeks in hypoxia. Donor MSCs derived from wild‐type (WT) mice or heme oxygenase‐1 (HO‐1) null mice (Hmox1KO) conferred partial protection from PAH when transplanted into WT or Hmox1KO recipients, whereas treatment with MSCs isolated from transgenic mice harboring a human HO‐1 transgene under the control of surfactant protein C promoter (SH01 line) reversed established disease in WT recipients. SH01‐MSC treatment of Hmox1KO animals, which develop right ventricular (RV) infarction under prolonged hypoxia, resulted in normal RV systolic pressure, significant reduction of RV hypertrophy and prevention of RV infarction. Donor MSCs isolated from a bitransgenic mouse line with doxycycline‐inducible, lung‐specific expression of HO‐1 exhibited similar therapeutic efficacy only on doxycycline treatment of the recipients. In vitro experiments indicate that potential mechanisms of MSC action include modulation of hypoxia‐induced lung inflammation and inhibition of smooth muscle cell proliferation. Cumulatively, our results demonstrate that MSCs ameliorate chronic hypoxia‐induced PAH and their efficacy is highly augmented by lung‐specific HO‐1 expression in the transplanted cells, suggesting an interplay between HO‐1‐dependent and HO‐1‐independent protective pathways. STEM CELLS 2011;29:99–107


Circulation | 2008

Absence of Cyclooxygenase-2 Exacerbates Hypoxia-Induced Pulmonary Hypertension and Enhances Contractility of Vascular Smooth Muscle Cells

Olin D. Liang; Alvaro A. Macias; Thomas R. Polte; Xiaoli Liu; Df Riascos; Su Wol Chung; Scott L. Schissel; Donald E. Ingber; S. Alex Mitsialis; Stella Kourembanas; Mark A. Perrella

Background— Cyclooxygenase-2 (COX-2) is upregulated in pulmonary artery smooth muscle cells (PASMCs) during hypoxia and may play a protective role in the response of the lung to hypoxia. Selective COX-2 inhibition may have detrimental pulmonary vascular consequences during hypoxia. Methods and Results— To investigate the role of COX-2 in the pulmonary vascular response to hypoxia, we subjected wild-type and COX-2–deficient mice to a model of chronic normobaric hypoxia. COX-2–null mice developed severe pulmonary hypertension with exaggerated elevation of right ventricular systolic pressure, significant right ventricular hypertrophy, and striking vascular remodeling after hypoxia. Pulmonary vascular remodeling in COX-2–deficient mice was characterized by PASMC hypertrophy but not increased proliferation. Furthermore, COX-2–deficient mice had significant upregulation of the endothelin-1 receptor (ETA) in the lung after hypoxia. Similarly, selective pharmacological inhibition of COX-2 in wild-type mice exacerbated hypoxia-induced pulmonary hypertension and resulted in PASMC hypertrophy and increased ETA receptor expression in pulmonary arterioles. The absence of COX-2 in vascular smooth muscle cells during hypoxia in vitro augmented traction forces and enhanced contractility of an extracellular matrix. Treatment of COX-2–deficient PASMCs with iloprost, a prostaglandin I2 analog, and prostaglandin E2 abrogated the potent contractile response to hypoxia and restored the wild-type phenotype. Conclusions— Our findings reveal that hypoxia-induced pulmonary hypertension and vascular remodeling are exacerbated in the absence of COX-2 with enhanced ETA receptor expression and increased PASMC hypertrophy. COX-2–deficient PASMCs have a maladaptive response to hypoxia manifested by exaggerated contractility, which may be rescued by either COX-2–derived prostaglandin I2 or prostaglandin E2.


PLOS ONE | 2009

Divergent cardiopulmonary actions of heme oxygenase enzymatic products in chronic hypoxia.

Sally H. Vitali; S. Alex Mitsialis; Olin D. Liang; Xiaoli Liu; Angeles Fernandez-Gonzalez; Helen Christou; Xinqi Wu; Francis X. McGowan; Stella Kourembanas

Background Hypoxia and pressure-overload induce heme oxygenase-1 (HO-1) in cardiomyocytes and vascular smooth muscle cells (VSMCs). HO-1−/− mice exposed to chronic hypoxia develop pulmonary arterial hypertension (PAH) with exaggerated right ventricular (RV) injury consisting of dilation, fibrosis, and mural thrombi. Our objective was to indentify the HO-1 product(s) mediating RV protection from hypoxic injury in HO-1−/− mice. Methodology/Principal Findings HO-1−/− mice were exposed to seven weeks of hypoxia and treated with inhaled CO or biliverdin injections. CO reduced right ventricular systolic pressure (RVSP) and prevented hypoxic pulmonary arteriolar remodeling in both HO-1−/− and control mice. Biliverdin had no significant effect on arteriolar remodeling or RVSP in either genotype. Despite this, biliverdin prevented RV failure in the hypoxic HO-1−/− mice (0/14 manifested RV wall fibrosis or thrombus), while CO-treated HO-1−/− mice developed RV insults similar to untreated controls. In vitro, CO inhibited hypoxic VSMC proliferation and migration but did not prevent cardiomyocyte death from anoxia-reoxygenation (A-R). In contrast, bilirubin limited A-R-induced cardiomyocyte death but did not inhibit VSMC proliferation and migration. Conclusions/Significance CO and bilirubin have distinct protective actions in the heart and pulmonary vasculature during chronic hypoxia. Moreover, reducing pulmonary vascular resistance may not prevent RV injury in hypoxia-induced PAH; supporting RV adaptation to hypoxia and preventing RV failure must be a therapeutic goal.


Experimental Lung Research | 2011

Green Tea Epigallo-Catechin-Galleate Ameliorates the Development of Obliterative Airway Disease

Olin D. Liang; Bjoern E. Kleibrink; Katharina Schuette-Nuetgen; Umakanth U. Khatwa; Bechara Mfarrej; Meera Subramaniam

ABSTRACT Lung transplantation has the worst outcome compared to all solid organ transplants due to chronic rejection known as obliterative bronchiolitis (OB). Pathogenesis of OB is a complex interplay of alloimmune-dependent and -independent factors, which leads to the development of inflammation, fibrosis, and airway obliteration that have been resistant to therapy. The alloimmune-independent inflammatory pathway has been the recent focus in the pathogenesis of rejection, suggesting that targeting this may offer therapeutic benefits. As a potent anti-inflammatory agent, epigallo-catechin-galleate (EGCG), a green tea catechin, has been very effective in ameliorating inflammation in a variety of diseases, providing the rationale for its use in this study in a murine heterotopic tracheal allograft model of OB. Mice treated with EGCG had reduced inflammation, with significantly less neutrophil and macrophage infiltration and significantly reduced fibrosis. On further investigation into the mechanisms, inflammatory cytokines keratinocyte (KC), interleukin-17 (IL-17), and tumor necrosis factor-α (TNF-α), involved in neutrophil recruitment, were reduced in the EGCG-treated mice. In addition, monocyte chemokine monocyte chemoattractant protein-1 (MCP-1) was significantly reduced by EGCG treatment. Antifibrotic cytokine interferon-γ–inducible protein-10 (IP-10) was increased and profibrotic cytokine transforming growth factor-β (TGF-β) was reduced, further characterizing the antifibrotic effects of EGCG. These findings suggest that EGCG has great potential in ameliorating the development of obliterative airway disease.


Stem Cells International | 2014

Bone Marrow-Derived Multipotent Stromal Cells Attenuate Inflammation in Obliterative Airway Disease in Mouse Tracheal Allografts

Alicia Casey; Fabian Dirks; Olin D. Liang; Hakima Harrach; Katharina Schuette-Nuetgen; Kristen T. Leeman; Carla F. Kim; Craig Gerard; Meera Subramaniam

Obliterative bronchiolitis (OB) remains the most significant cause of death in long-term survival of lung transplantation. Using an established murine heterotopic tracheal allograft model, the effects of different routes of administration of bone marrow-derived multipotent stromal cells (MSCs) on the development of OB were evaluated. Tracheas from BALB/c mice were implanted into the subcutaneous tissue of major histocompatibility complex- (MHC-) disparate C57BL/6 mice. At the time of transplant, bone marrow-derived MSCs were administered either systemically or locally or via a combination of the two routes. The allografts were explanted at various time points after transplantation and were evaluated for epithelial integrity, inflammatory cell infiltration, fibrosis, and luminal obliteration. We found that the most effective route of bone marrow-derived MSC administration is the combination of systemic and local delivery. Treatment of recipient mice with MSCs suppressed neutrophil, macrophage, and T-cell infiltration and reduced fibrosis. These beneficial effects were observed despite lack of significant MSC epithelial engraftment or new epithelial cell generation. Our study suggests that optimal combination of systemic and local delivery of MSCs may ameliorate the development of obliterative airway disease through modulation of immune response.


Developmental Cell | 2013

Deficiency of lipid phosphatase SHIP enables long-term reconstitution of hematopoietic inductive bone marrow microenvironment.

Olin D. Liang; Jiayun Lu; César Nombela-Arrieta; Jia Zhong; Li Zhao; Gregory Pivarnik; Subhanjan Mondal; Li Chai; Leslie E. Silberstein; Hongbo R. Luo

Collaboration


Dive into the Olin D. Liang's collaboration.

Top Co-Authors

Avatar

S. Alex Mitsialis

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Changjin Lee

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mun Seog Chang

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Xianlan Liu

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Eleni Vergadi

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Huamei He

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge