Oliver Balmer
Yale University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Oliver Balmer.
PLOS Neglected Tropical Diseases | 2011
Oliver Balmer; Jon S Beadell; Wendy Gibson; Adalgisa Caccone
Background Characterizing the evolutionary relationships and population structure of parasites can provide important insights into the epidemiology of human disease. Methodology/Principal Findings We examined 142 isolates of Trypanosoma brucei from all over sub-Saharan Africa using three distinct classes of genetic markers (kinetoplast CO1 sequence, nuclear SRA gene sequence, eight nuclear microsatellites) to clarify the evolutionary history of Trypanosoma brucei rhodesiense (Tbr) and T. b. gambiense (Tbg), the causative agents of human African trypanosomosis (sleeping sickness) in sub-Saharan Africa, and to examine the relationship between Tbr and the non-human infective parasite T. b. brucei (Tbb) in eastern and southern Africa. A Bayesian phylogeny and haplotype network based on CO1 sequences confirmed the taxonomic distinctness of Tbg group 1. Limited diversity combined with a wide geographical distribution suggested that this parasite has recently and rapidly colonized hosts across its current range. The more virulent Tbg group 2 exhibited diverse origins and was more closely allied with Tbb based on COI sequence and microsatellite genotypes. Four of five COI haplotypes obtained from Tbr were shared with isolates of Tbb, suggesting a close relationship between these taxa. Bayesian clustering of microsatellite genotypes confirmed this relationship and indicated that Tbr and Tbb isolates were often more closely related to each other than they were to other members of the same subspecies. Among isolates of Tbr for which data were available, we detected just two variants of the SRA gene responsible for human infectivity. These variants exhibited distinct geographical ranges, except in Tanzania, where both types co-occurred. Here, isolates possessing distinct SRA types were associated with identical COI haplotypes, but divergent microsatellite signatures. Conclusions/Significance Our data provide strong evidence that Tbr is only a phenotypic variant of Tbb; while relevant from a medical perspective, Tbr is not a reproductively isolated taxon. The wide distribution of the SRA gene across diverse trypanosome genetic backgrounds suggests that a large amount of genetic diversity is potentially available with which human-infective trypanosomes may respond to selective forces such as those exerted by drugs.
Ecology | 2009
Oliver Balmer; Stephen C. Stearns; Andreas Schötzau; Reto Brun
It is becoming increasingly clear that under natural conditions parasitic infections commonly consist of co-infections with multiple conspecific strains. Multiple-strain infections lead to intraspecific interactions and may have important ecological and evolutionary effects on both hosts and parasites. However, experimental evidence on intraspecific competition or facilitation in infections has been scarce because of the technical challenges of distinguishing and tracking individual co-infecting strains. To overcome this limitation, we engineered transgenic strains of the protozoan parasite Trypanosoma brucei, the causal agent of human African sleeping sickness. Different strains were transfected with fluorescence genes of different colors to make them visually distinguishable in order to investigate the effects of multiple-strain infections on parasite population dynamics and host fitness. We infected mice either with each strain alone or with mixes of two strains. Our results show a strong mutual competitive suppression of co-infecting T. brucei strains very early in infection. This mutual suppression changes within-host parasite dynamics and alleviates the effects of infection on the host. The strength of suppression depends on the density of the co-infecting strain, and differences in life-history traits between the strains determine the consequences of strain-strain competition for the host. Unexpectedly, co-infection with a less virulent strain significantly enhances host survival (+15%). Analysis of the strain dynamics reveals that this is due to the suppression of the density of the more virulent strain (-33%), whose degree of impact ultimately determines the physical condition of the host. The competitive suppression is likely caused by allelopathic interference or by apparent competition mediated by strain-specific immune responses. These findings highlight the importance of intraspecific variation for parasite-parasite and parasite-host interactions. To fully understand parasite and disease dynamics, the genetic diversity of infections must be taken into account. Through changes in parasite dynamics, intraspecific variation may further affect transmission dynamics and select for increased virulence of each strain. The precise mechanisms underlying mutual suppression are not yet understood but may be exploitable to fight this devastating parasite. Our results are therefore not only of basic ecological interest investigating an important form of intraspecific competition, but may also have applied relevance for public health.
Current Opinion in Infectious Diseases | 2006
Reto Brun; Oliver Balmer
Purpose of reviewTo review recent literature on human African trypanosomiasis, focussing on genome sequencing, diagnosis and drug discovery, and typing of trypanosomes. Recent findingsThe most important recent development has been the completion of the Trypanosoma brucei genome which will greatly facilitate the discovery of new drug targets and genetic markers. Correct staging of the disease is of key importance for treatment. The analysis of sleep patterns is a promising new method to this end and has advanced enough to begin thorough clinical trials. In terms of novel drug candidates, dicationic molecules show the most promise with one oral diamidine in phase 3 clinical trials. New targets and classes of molecules which show in vitro trypanocidal activity are also described. Two new methods – MGE-PCR and microsatellites – allow analyses without parasite cultivation, eliminating a major impediment to efficient sampling for population studies. The finding that several wild animal species harbour T. b. gambiense, and that parasite transmission is efficient even from very low parasitaemias, sheds a new light on the importance of animal reservoirs. SummaryThe use of T. brucei as model system for molecular and cell biology is regularly producing new technologies exploitable for diagnosis and new drugs. Drug discovery and development experience a revival through new public-private partnerships and initiatives. The challenge remains to translate this progress into improvements for affected people in disease endemic areas.
Acta Tropica | 2008
Oliver Balmer; Adalgisa Caccone
It is becoming increasingly clear that parasitic infections frequently contain multiple strains of the same parasite species. This may have important consequences for the parasite dynamics in the host and thus alter disease and transmission dynamics. In Trypanosoma brucei, the causal agent of human African trypanosomiasis (sleeping sickness), multiple-strain infections have previously been demonstrated to occur. Here, we analyzed field isolates of T. b. gambiense, T. b. rhodesiense, and T. b. brucei, isolated throughout Africa to assess the commonness of multiple-strain infections across the natural range of this parasite. Using eight highly variable microsatellite loci, we found multiple strains in 8.8% of our isolates. Due to the technical challenges of detecting multiple infections this number represents a minimum estimate and the true frequency of multiple-strain infections is likely to be higher. Multiple-strain infections occurred across the entire East-West range of the parasite. Together with previous results, these findings strongly suggest that multiple-strain infections are common for this parasite and that their consequences for epidemiology and parasite evolution should be investigated in detail.
Journal of Heredity | 2011
Oliver Balmer; Claudio Ciofi; David A. Galbraith; Ian R. Swingland; George R. Zug; Adalgisa Caccone
Evolution of population structure on islands is the result of physical processes linked to volcanism, orogenic events, changes in sea level, as well as habitat variation. We assessed patterns of genetic structure in the giant tortoise of the Aldabra atoll, where previous ecological studies suggested population subdivisions as a result of landscape discontinuity due to unsuitable habitat and island separation. Analysis of mitochondrial DNA (mtDNA) control region sequences and allelic variation at 8 microsatellite loci were conducted on tortoises sampled in 3 locations on the 2 major islands of Aldabra. We found no variation in mtDNA sequences. This pattern corroborated earlier work supporting the occurrence of a founding event during the last interglacial period and a further reduction in genetic variability during historical time. On the other hand, significant population structure recorded at nuclear loci suggested allopatric divergence possibly due to geographical barriers among islands and ecological partitions hindering tortoise movements within islands. This is the first attempt to study the population genetics of Aldabra tortoises, which are now at carrying capacity in an isolated terrestrial ecosystem where ecological factors appear to have a strong influence on population dynamics.
Conservation Biology | 2000
Oliver Balmer; Andreas Erhardt
Conservation Biology | 2002
Oliver Balmer
Molecular Ecology Notes | 2006
Oliver Balmer; Christopher Palma; Annette MacLeod; Adalgisa Caccone
Acta Tropica | 2006
Oliver Balmer; Cristóbal Tostado
Acta Tropica | 2006
Oliver Balmer; Crist obal Tostado