Oliver Birkholz
University of Osnabrück
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Oliver Birkholz.
Nature | 2015
Patrice Rassam; Nikki A. Copeland; Oliver Birkholz; Csaba Tóth; Matthieu Chavent; Anna L. Duncan; Stephen J. Cross; Nicholas G. Housden; Renata Kaminska; Urban Seger; Diana M. Quinn; Tamsin J. Garrod; Mark S.P. Sansom; Jacob Piehler; Christoph G. Baumann
Gram-negative bacteria inhabit a broad range of ecological niches. For Escherichia coli, this includes river water as well as humans and animals, where it can be both a commensal and a pathogen. Intricate regulatory mechanisms ensure that bacteria have the right complement of β-barrel outer membrane proteins (OMPs) to enable adaptation to a particular habitat. Yet no mechanism is known for replacing OMPs in the outer membrane, an issue that is further confounded by the lack of an energy source and the high stability and abundance of OMPs. Here we uncover the process underpinning OMP turnover in E. coli and show it to be passive and binary in nature, in which old OMPs are displaced to the poles of growing cells as new OMPs take their place. Using fluorescent colicins as OMP-specific probes, in combination with ensemble and single-molecule fluorescence microscopy in vivo and in vitro, as well as molecular dynamics simulations, we established the mechanism for binary OMP partitioning. OMPs clustered to form ∼0.5-μm diameter islands, where their diffusion is restricted by promiscuous interactions with other OMPs. OMP islands were distributed throughout the cell and contained the Bam complex, which catalyses the insertion of OMPs in the outer membrane. However, OMP biogenesis occurred as a gradient that was highest at mid-cell but largely absent at cell poles. The cumulative effect is to push old OMP islands towards the poles of growing cells, leading to a binary distribution when cells divide. Hence, the outer membrane of a Gram-negative bacterium is a spatially and temporally organized structure, and this organization lies at the heart of how OMPs are turned over in the membrane.
Journal of the American Chemical Society | 2013
Friedrich Roder; Oliver Birkholz; Oliver Beutel; Dirk Paterok; Jacob Piehler
We have established an approach for the spatial control of lipid phase separation in tethered polymer-supported membranes (PSMs), which were obtained by vesicle fusion on a poly(ethylene glycol) polymer brush functionalized with fatty acid moieties. Phase separation of ternary lipid mixtures (1,2-dioleoyl-sn-glycero-3-phosphocholine/sphingomyelin/cholesterol) into liquid-disordered (l(d)) and liquid-ordered (l(o)) phases within both leaflets was obtained with palmitic acid as the anchoring group. In contrast, tethering of the PSM with oleic acid interfered with the phase separation in the surface-proximal leaflet. We exploited this feature for the assembly of l(o) domains within PSMs into defined structures by binary micropatterning of palmitic and oleic acid into complementary areas. Ternary lipid mixtures spontaneously separated into l(o) and l(d) phases controlled by the geometry of the underlying tethers. Transmembrane proteins reconstituted in these phase-separated PSMs strictly partitioned into the l(d) phase. Hence, the l(o) phase could be used for confining transmembrane proteins into microscopic and submicroscopic domains.
Nano Letters | 2014
Domenik Liße; Christian Richter; Christoph Drees; Oliver Birkholz; Changjiang You; Enrico Rampazzo; Jacob Piehler
On the basis of a protein cage scaffold, we have systematically explored intracellular application of nanoparticles for single molecule studies and discovered that recognition by the autophagy machinery plays a key role for rapid metabolism in the cytosol. Intracellular stealth nanoparticles were achieved by heavy surface PEGylation. By combination with a generic approach for nanoparticle monofunctionalization, efficient labeling of intracellular proteins with high fidelity was accomplished, allowing unbiased long-term tracking of proteins in the outer mitochondrial membrane.
Angewandte Chemie | 2014
Oliver Beutel; Jörg Nikolaus; Oliver Birkholz; Changjiang You; Thomas Schmidt; Andreas Herrmann; Jacob Piehler
Lipid analogues carrying three nitrilotriacetic acid (tris-NTA) head groups were developed for the selective targeting of His-tagged proteins into liquid ordered (lo ) or liquid disordered (ld ) lipid phases. Strong partitioning into the lo phase of His-tagged proteins bound to tris-NTA conjugated to saturated alkyl chains (tris-NTA DODA) was achieved, while tris-NTA conjugated to an unsaturated alkyl chain (tris-NTA SOA) predominantly resided in the ld phase. Interestingly, His-tag-mediated lipid crosslinking turned out to be required for efficient targeting into the lo phase by tris-NTA DODA. Robust partitioning into lo phases was confirmed by using viral lipid mixtures and giant plasma membrane vesicles. Moreover, efficient protein targeting into lo and ld domains within the plasma membrane of living cells was demonstrated by single-molecule tracking, thus establishing a highly generic approach for exploring lipid microdomains in situ.
Small | 2013
Sharon Waichman; Friedrich Roder; Christian Richter; Oliver Birkholz; Jacob Piehler
Micropatterned polymer-supported membranes (PSM) are established as a tool for confining the diffusion of transmembrane proteins for single molecule studies. To this end, a photochemical surface modification with hydrophobic tethers on a PEG polymer brush is implemented for capturing of lipid vesicles and subsequent fusion. Formation of contiguous membranes within micropatterns is confirmed by scanning force microscopy, fluorescence recovery after photobleaching (FRAP), and super-resolved single-molecule tracking and localization microscopy. Free diffusion of transmembrane proteins reconstituted into micropatterned PSM is demonstrated by FRAP and by single-molecule tracking. By exploiting the confinement of diffusion within micropatterned PSM, the diffusion and interaction dynamics of individual transmembrane receptors are quantitatively resolved.
Small | 2015
Tim Wedeking; Sara Löchte; Oliver Birkholz; Alexander Wallenstein; Julia Trahe; Jürgen Klingauf; Jacob Piehler; Changjiang You
Triggered immobilization of proteins in the plasma membrane of living cells into functional micropatterns is established by using an adaptor protein, which is comprised of an antiGFP nanobody fused to the HaloTag protein. Efficient in situ reorganization of the type I interferon receptor subunits as well as intact, fully functional signaling complexes in living cells are achieved by this method.
Langmuir | 2015
Matthew J. Peel; Stephen J. Cross; Oliver Birkholz; Amine Aladağ; Jacob Piehler; Suman Peel
Polymer-supported bilayers (PSBs) are a recognized tool for drug discovery through function-interaction analysis of membrane proteins. While silica-supported bilayers (SSBs) spontaneously form from surface-adsorbed vesicles, successful PSB formation via a similar method has thus far been limited by an insufficient understanding of the underlying vesicle-remodelling processes. Here, we generated a polymer support through the incubation of poly-L-lysine conjugated to alkyl-chain-terminated poly(ethylene)glycol on silica. This polymer-coated silica substrate yielded efficient vesicle adsorption and spontaneous bilayer formation, thereby providing a rare opportunity to address the mechanism of PSB formation and compare it to that of SSB. The combined use of super-resolution imaging, kinetics, and simulations indicates that the rupture of stochastically formed vesicle clusters is the rate-limiting step, which is an order of magnitude higher for silica than for polymer-coated silica. This was confirmed by directly demonstrating increased rupture rates for surface adsorbed multivesicle assemblies formed by vesicle cross-linking in solution. On the basis of this key insight we surmised that a low propensity of cluster rupture can be compensated for by an increase in the number density of clusters: the deposition of a mixture of oppositely charged vesicles resulted in bilayer formation on another alkane-PEG type of interface, which despite efficient vesicle adsorption otherwise fails to support spontaneous bilayer formation. This potentially provides a universal strategy for promoting bilayer formation on resistant surfaces without resorting to modifying the surface itself. Therefore, multivesicle assemblies with tailored geometries not only could facilitate bilayer formation on polymers with interesting functional properties but also could instigate the exploration of vesicle architecture for other processes involving vesicle remodelling such as drug delivery.
Nature Communications | 2017
David Richter; Ignacio Moraga; Hauke Winkelmann; Oliver Birkholz; Stephan Wilmes; Markos Schulte; Michael Kraich; Hella Kenneweg; Oliver Beutel; Philipp Selenschik; Dirk Paterok; Martynas Gavutis; Thomas Schmidt; K. Christopher Garcia; Thomas Müller; Jacob Piehler
The spatiotemporal organization of cytokine receptors in the plasma membrane is still debated with models ranging from ligand-independent receptor pre-dimerization to ligand-induced receptor dimerization occurring only after receptor uptake into endosomes. Here, we explore the molecular and cellular determinants governing the assembly of the type II interleukin-4 receptor, taking advantage of various agonists binding the receptor subunits with different affinities and rate constants. Quantitative kinetic studies using artificial membranes confirm that receptor dimerization is governed by the two-dimensional ligand–receptor interactions and identify a critical role of the transmembrane domain in receptor dimerization. Single molecule localization microscopy at physiological cell surface expression levels, however, reveals efficient ligand-induced receptor dimerization by all ligands, largely independent of receptor binding affinities, in line with the similar STAT6 activation potencies observed for all IL-4 variants. Detailed spatiotemporal analyses suggest that kinetic trapping of receptor dimers in actin-dependent microcompartments sustains robust receptor dimerization and signalling.
ACS Nano | 2015
Oliver Beutel; Friedrich Roder; Oliver Birkholz; Christian Rickert; Heinz-Jürgen Steinhoff; Michal Grzybek; Ünal Coskun; Jacob Piehler
We present an ultrasensitive technique for quantitative protein-protein interaction analysis in a two-dimensional format based on phase-separated, micropatterned membranes. Interactions between proteins captured to lipid probes via an affinity tag trigger partitioning into the liquid-ordered phase, which is readily quantified by fluorescence imaging. Based on a calibration with well-defined low-affinity protein-protein interactions, equilibrium dissociation constants >1 mM were quantified. Direct capturing of proteins from mammalian cell lysates enabled us to detect homo- and heterodimerization of signal transducer and activator of transcription proteins. Using the epidermal growth factor receptor (EGFR) as a model system, quantification of low-affinity interactions between different receptor domains contributing to EGFR dimerization was achieved. By exploitation of specific features of the membrane-based assay, the regulation of EGFR dimerization by lipids was demonstrated.
Nature Communications | 2018
Matthieu Chavent; Anna L. Duncan; Patrice Rassam; Oliver Birkholz; Jean Hélie; Tyler Reddy; Dmitry Beliaev; Ben Hambly; Jacob Piehler; Mark S.P. Sansom
The spatiotemporal organisation of membranes is often characterised by the formation of large protein clusters. In Escherichia coli, outer membrane protein (OMP) clustering leads to OMP islands, the formation of which underpins OMP turnover and drives organisation across the cell envelope. Modelling how OMP islands form in order to understand their origin and outer membrane behaviour has been confounded by the inherent difficulties of simulating large numbers of OMPs over meaningful timescales. Here, we overcome these problems by training a mesoscale model incorporating thousands of OMPs on coarse-grained molecular dynamics simulations. We achieve simulations over timescales that allow direct comparison to experimental data of OMP behaviour. We show that specific interaction surfaces between OMPs are key to the formation of OMP clusters, that OMP clusters present a mesh of moving barriers that confine newly inserted proteins within islands, and that mesoscale simulations recapitulate the restricted diffusion characteristics of OMPs.In Escherichia coli, outer membrane protein (OMP) cluster and form islands, but the origin and behaviour of those clusters remains poorly understood. Here authors use coarse grained molecular dynamics simulation and show that their mesoscale simulations recapitulate the restricted diffusion characteristics of OMPs.