Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oliver Brand is active.

Publication


Featured researches published by Oliver Brand.


Proceedings of the IEEE | 1998

Micromachined thermally based CMOS microsensors

H. Baltes; Oliver Paul; Oliver Brand

An integrated circuit (IC) approach to thermal microsensors is presented. The focus is on thermal sensors with on-chip bias and signal conditioning circuits made by industrial complementary metal-oxide-semiconductor (CMOS) IC technology in combination with post-CMOS micromachining or deposition techniques. CMOS materials and physical effects pertinent to thermal sensors are summarized together with basic structures used for microheaters, thermistors, thermocouples, thermal isolation, and heat sinks. As examples of sensors using temperature measurement, we present micromachined CMOS radiation sensors and thermal converters. Examples for sensors based on thermal actuation include thermal flow and pressure sensors, as well as thermally excited microresonators for position and chemical sensing. We also address sensors for the characterization of process-dependent thermal properties of CMOS materials, such as thermal conductivity, Seebeck coefficient, and heat capacity, whose knowledge is indispensable for thermal sensor design. Last, two complete packaged microsystems-a thermoelectric air-flow sensor and a thermoelectric infrared intrusion detector-are reported as demonstrators.


IEEE\/ASME Journal of Microelectromechanical Systems | 1999

Magnetic microactuators based on polymer magnets

Laure K. Lagorce; Oliver Brand; Mark G. Allen

Integrated permanent magnet microactuators have been fabricated using micromachined polymer magnets. The hard magnetic material utilized is a polymer composite, consisting of magnetically hard ceramic ferrite powder imbedded in a commercial epoxy resin to a volume loading of 80%. The magnets have the form of thin disks approximately 4 mm in diameter and 90 /spl mu/m in thickness. These disks have been magnetized in the thickness direction, and even in this geometrically unfavorable direction showed typical permanent magnet behavior with an intrinsic coercivity H/sub ci/ of 4000 Oe (320 kA/m) and a residual induction B/sub r/ of 600 Gauss (60 mT). Cantilever beam-type magnetic actuators carrying a screen-printed disk magnet on their free ends have been fabricated on an epoxy board. A planar coil on the opposite side of the substrate is used to drive the beams vertically. The actuators exhibit hard magnetic behavior allowing both attraction and repulsion by reversing the current direction. Static and dynamic testing of the magnetic actuators have been performed. The experimental data are compared with theoretical results obtained from both finite element simulations and analytical models. Good agreement is obtained between simulation and experiment.


IEEE\/ASME Journal of Microelectromechanical Systems | 1998

Fully integrated magnetically actuated micromachined relays

William P. Taylor; Oliver Brand; Mark G. Allen

A fully integrated magnetically actuated micromachined relay has been successfully fabricated and tested. This particular device uses a single-layer coil to actuate a movable upper magnetically responsive platform. The minimum current for actuation was 180 mA, resulting in an actuation power of 33 mW. Devices have been tested which can make and break 1.2 A of current through the relay contacts when the relay is electromagnetically switched. Operational lifetimes in excess of 850000 operations have been observed. Contact resistances as low as 22.4 m/spl Omega/ have been observed under electromagnetic actuation. Magnetic and structural finite-element (FE) simulations have been performed using ANSYS to calculate both the actuation and contact forces.


Proceedings of the IEEE | 2003

Microfabrication techniques for chemical/biosensors

Andreas Hierlemann; Oliver Brand; Christoph Hagleitner; H. Baltes

Microfabrication processes for chemical and biochemical sensors are reviewed. Standard processing steps originating from semiconductor technology are detailed, and specific micromachining steps to fabricate three-dimensional mechanical structures are described. Fundamental chemical sensor principles are briefly abstracted and corresponding state-of-the-art examples of microfabricated chemical sensors and biosensors are given. The advantages and disadvantages of either fabricating devices in IC fabrication technology with additional microfabrication steps, or of using custom-designed nonstandard microfabrication process flows are debated. Finally, monolithic integrated chemical and biological microsensor systems are presented, which include transducer structures and operation circuitry on a single chip.


IEEE Transactions on Components and Packaging Technologies | 2003

Microjet cooling devices for thermal management of electronics

Dan S. Kercher; Jeong Bong Lee; Oliver Brand; Mark G. Allen; Ari Glezer

This research is an effort to demonstrate the applicability of miniaturized synthetic jet (microjet) technology to the area of thermal management of microelectronic devices. Synthetic jets are jets which are formed from entrainment and expulsion of the fluid in which they are embedded. Design issues of microjet cooling devices are discussed along with characterization of excitation elements and the turbulent synthetic jets produced thereby. Geometrical parameters of the microjet cooling devices were empirically optimized with regards to cooling performance. The cooling performance of the optimized microjets was compared with previous theoretical and empirical studies of conventional jet impingement. The cooling performance of the microjet devices has been investigated in an open environment as well as in a vented and closed case environment. In such experiments, the synthetic jet impinges normal to the surface of a packaged thermal test die, comprising a heater and a diode-based temperature sensor. This test assembly allows simultaneous heat generation and temperature sensing of the package, thereby enabling assessment of the performance of the synthetic jet. Using microjet cooling devices, a thermal resistance of 30.1/spl deg/C/W has been achieved (when unforced cooling is used, thermal resistance is 59.6/spl deg/C/W) when the test chip is located at 15mm spacing from the jet exit plane. In order to more directly compare and scale the cooling results, a preliminary study on heat transfer correlations of the microjet cooling device has been performed. Finally, a comparison of the performance of the microjet cooler with standard cooling fans is given.


IEEE\/ASME Journal of Microelectromechanical Systems | 2008

High

Jae Hyeong Seo; Oliver Brand

This paper presents a novel resonant-microsensor platform for chemical and biological sensing applications in gaseous and liquid environment. The disk-shape microstructure is operated in a rotational in-plane mode with typical resonance frequencies between 300 and 1000 kHz. By shearing the surrounding fluid instead of compressing it, damping is reduced, and high quality factors are achieved. The resonators feature electrothermal excitation elements and a piezoresistive Wheatstone bridge for detection, sensitive only to the in-plane rotational vibration mode. Microresonators with different dimensions have been fabricated and extensively characterized, achieving quality factors of up to 5800 in air. First tests performed in water after parylene coating show a Q factor of approximately 100. Short-term frequency stabilities obtained from Allan-variance measurements with 1-s gate time are as low as 1.2times10-8 in air and 2.3times10-6 in water. An analytical model describing the mechanical behavior of the disk resonators, represented by a simple harmonic oscillator, is derived. In particular, expression for the resonance frequency and quality factor of the disk resonators subject to air/liquid damping are proposed and compared with experimental results.


Sensors and Actuators B-chemical | 2000

Q

Andreas Hierlemann; D. Lange; Christoph Hagleitner; Nicole Kerness; Andreas Koll; Oliver Brand; H. Baltes

Abstract We report on results achieved with three different types of polymer-coated chemical microsensors fabricated in industrial CMOS technology followed by post-CMOS anisotropic etching and film deposition. The first and most extensively studied transducer is a microcapacitor sensitive to changes in dielectric properties of the polymer layer upon analyte absorption. An on-chip integrated ΣΔ-converter allows for detecting the minute capacitance changes. The second transducer is a resonant cantilever sensitive to predominantly mass changes. The cantilever is electrothermally excited; its vibrations are detected using a piezoresistive Wheatstone bridge. In analogy to acoustic wave devices, analyte absorption in the polymer causes resonance frequency shifts as a consequence of changes in the oscillating mass. The last transducer is a microcalorimeter consisting of a polymer-coated sensing thermopile and an uncoated reference thermopile each on micromachined membranes. The measurand is the absorption or desorption heat of organic volatiles in the polymer layer. The difference between the resulting thermovoltages is processed with an on-chip low-noise differential amplifier. Gas test measurements with all three transducer principles will be presented. The goal is to combine the three different transducer principles and vary the polymers in an array type structure to build a new generation of application-specific microsensor systems.


Proceedings of the IEEE | 2006

-Factor In-Plane-Mode Resonant Microsensor Platform for Gaseous/Liquid Environment

Oliver Brand

Sensing systems-on-chip (SSoCs), combining micromachined sensing structures and microelectronic building blocks on a single chip, are reviewed. While single-chip pressure and inertial sensing systems have been commercially available for more than a decade, the recent expansion of SSoC into new application areas, ranging from chemical and biochemical sensing to atomic force microscopy, demonstrates the full potential of this microsensor integration approach. Available fabrication processes for integrated sensing systems are summarized, categorizing them into pre-, intra-, and post-CMOS approaches depending on the way the micromachining module is merged with the integrated circuit (IC) technology. Examples of SSoCs are presented to highlight the different integration options, ranging from cointegration of micromachined sensors with purely analog signal chains to microsystems with cointegrated digital signal processors and digital interfaces.


IEEE\/ASME Journal of Microelectromechanical Systems | 2010

Application-specific sensor systems based on CMOS chemical microsensors

Luke A. Beardslee; Assim M. Addous; Stephen M. Heinrich; Fabien Josse; Isabelle Dufour; Oliver Brand

Thermally excited and piezoresistively detected bulk-micromachined cantilevers vibrating in their in-plane flexural resonance mode are presented. By shearing the surrounding fluid rather than exerting normal stress on it, the in-plane mode cantilevers exhibit reduced added fluid mass effects and improved quality factors in a fluid environment. In this letter, different cantilever geometries with in-plane resonance frequencies from 50 kHz to 2.2 MHz have been tested, with quality factors as high as 4200 in air and 67 in water.


international conference on micro electro mechanical systems | 2002

Microsensor Integration Into Systems-on-Chip

H. Baltes; Oliver Brand; Andreas Hierlemann; D. Lange; Christoph Hagleitner

The paper reviews the state-of-the-art in the field of CMOS-based microelectromechanical systems (MEMS). The different CMOS MEMS fabrication approaches, pre-CMOS, intermediate-CMOS, and post-CMOS, are summarized and examples are given. Two microsystems fabricated with post-CMOS micromachining are presented, namely a mass-sensitive chemical sensor for detection of organic volatiles in air and a 10-cantilever force sensor array for application in scanning probe microscopy. The paper finishes with a look into the future, discussing key challenges and future application fields for CMOS MEMS.

Collaboration


Dive into the Oliver Brand's collaboration.

Researchain Logo
Decentralizing Knowledge