Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oliver Brendel is active.

Publication


Featured researches published by Oliver Brendel.


Plant Science | 2012

Mesophyll diffusion conductance to CO2: An unappreciated central player in photosynthesis

Jaume Flexas; Margaret M. Barbour; Oliver Brendel; Hernán M. Cabrera; Marc Carriquí; Antonio Diaz-Espejo; Cyril Douthe; Erwin Dreyer; Juan Pedro Ferrio; Jorge Gago; Alexander Gallé; Jeroni Galmés; Naomi Kodama; Hipólito Medrano; Ülo Niinemets; José Javier Peguero-Pina; Alicia Pou; Miquel Ribas-Carbo; M. Tomás; Tiina Tosens; Charles R. Warren

Mesophyll diffusion conductance to CO(2) is a key photosynthetic trait that has been studied intensively in the past years. The intention of the present review is to update knowledge of g(m), and highlight the important unknown and controversial aspects that require future work. The photosynthetic limitation imposed by mesophyll conductance is large, and under certain conditions can be the most significant photosynthetic limitation. New evidence shows that anatomical traits, such as cell wall thickness and chloroplast distribution are amongst the stronger determinants of mesophyll conductance, although rapid variations in response to environmental changes might be regulated by other factors such as aquaporin conductance. Gaps in knowledge that should be research priorities for the near future include: how different is mesophyll conductance among phylogenetically distant groups and how has it evolved? Can mesophyll conductance be uncoupled from regulation of the water path? What are the main drivers of mesophyll conductance? The need for mechanistic and phenomenological models of mesophyll conductance and its incorporation in process-based photosynthesis models is also highlighted.


Genetics | 2005

Comparison of Quantitative Trait Loci for Adaptive Traits Between Oak and Chestnut Based on an Expressed Sequence Tag Consensus Map

Manuela Casasoli; Jérémy Derory; Caroline Morera-Dutrey; Oliver Brendel; Ilga Porth; Jean-Marc Guehl; Fiorella Villani; Antoine Kremer

A comparative genetic and QTL mapping was performed between Quercus robur L. and Castanea sativa Mill., two major forest tree species belonging to the Fagaceae family. Oak EST-derived markers (STSs) were used to align the 12 linkage groups of the two species. Fifty-one and 45 STSs were mapped in oak and chestnut, respectively. These STSs, added to SSR markers previously mapped in both species, provided a total number of 55 orthologous molecular markers for comparative mapping within the Fagaceae family. Homeologous genomic regions identified between oak and chestnut allowed us to compare QTL positions for three important adaptive traits. Colocation of the QTL controlling the timing of bud burst was significant between the two species. However, conservation of QTL for height growth was not supported by statistical tests. No QTL for carbon isotope discrimination was conserved between the two species. Putative candidate genes for bud burst can be identified on the basis of colocations between EST-derived markers and QTL.


New Phytologist | 2012

Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes.

Elisa Marguerit; Oliver Brendel; Eric Lebon; Cornelis van Leeuwen; Nathalie Ollat

The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture of the rootstock control of scion transpiration-related traits over a period of 3 yr. The rootstocks studied were full sibs from a controlled interspecific cross (Vitis vinifera cv. Cabernet Sauvignon × Vitis riparia cv. Gloire de Montpellier), onto which we grafted a single scion genotype. After 10 d without stress, the water supply was progressively limited over a period of 10 d, and a stable water deficit was then applied for 15 d. Transpiration rate was estimated daily and a mathematical curve was fitted to its response to water deficit intensity. We also determined δ(13) C values in leaves, transpiration efficiency and water extraction capacity. These traits were then analysed in a multienvironment (year and water status) quantitative trait locus (QTL) analysis. Quantitative trait loci, independent of year and water status, were detected for each trait. One genomic region was specifically implicated in the acclimation of scion transpiration induced by the rootstock. The QTLs identified colocalized with genes involved in water deficit responses, such as those relating to ABA and hydraulic regulation. Scion transpiration rate and its acclimation to water deficit are thus controlled genetically by the rootstock, through different genetic architectures.


Tree Genetics & Genomes | 2008

Quantitative trait loci controlling water use efficiency and related traits in Quercus robur L.

Oliver Brendel; Didier Le Thiec; Caroline Scotti-Saintagne; Catherine Bodénès; Antoine Kremer; Jean-Marc Guehl

Genetic variation for intrinsic water use efficiency (Wi) and related traits was estimated in a full-sib family of Quercus robur L. over 3xa0years. The genetic linkage map available for this F1 family was used to locate quantitative trait loci (QTL) for Wi, as estimated by leaf carbon stable isotope composition (δ13C) or the ratio of net CO2 assimilation rate (A) to stomatal conductance to water vapour (gw) and related leaf traits. Gas exchange measurements were used to standardize estimates of A and gw and to model the sensitivity of gw to leaf-to-air vapour pressure deficit (sgVPD). δ13C varied by more than 3‰ among the siblings, which is equivalent to 40% variation of Wi. Most of the studied traits exhibited high clonal mean repeatabilities (>50%; proportion of clonal mean variability in global variance). Repeatabilities for δ13C, leaf mass per area (LMA) and leaf nitrogen content were higher than 70%. For δ13C, ten QTLs were detected, one of which was detected repeatedly for all 3xa0years and consistently explained more than 20% of measured variance. Four genomic regions were found in which co-localizing traits linked variation in Wi to variations in leaf chlorophyll and nitrogen content, LMA and sgVPD. A positive correlation using clonal means between δ13C and A/gw, as well as a co-localisation of QTL detected for both traits, can be seen as validation of the theoretical model linking the genetic architecture of these two traits.


BMC Genomics | 2010

Bioinformatic analysis of ESTs collected by Sanger and pyrosequencing methods for a keystone forest tree species: oak

Saneyoshi Ueno; Grégoire Le Provost; Valérie Léger; Christophe Klopp; Céline Noirot; Jean-Marc Frigerio; Franck Salin; Jérôme Salse; Michael Abrouk; Florent Murat; Oliver Brendel; Jérémy Derory; Pierre Abadie; Patrick Léger; Cyril Cabane; Aurélien Barré; Antoine de Daruvar; Arnaud Couloux; Patrick Wincker; Antoine Kremer; Christophe Plomion

BackgroundThe Fagaceae family comprises about 1,000 woody species worldwide. About half belong to the Quercus family. These oaks are often a source of raw material for biomass wood and fiber. Pedunculate and sessile oaks, are among the most important deciduous forest tree species in Europe. Despite their ecological and economical importance, very few genomic resources have yet been generated for these species. Here, we describe the development of an EST catalogue that will support ecosystem genomics studies, where geneticists, ecophysiologists, molecular biologists and ecologists join their efforts for understanding, monitoring and predicting functional genetic diversity.ResultsWe generated 145,827 sequence reads from 20 cDNA libraries using the Sanger method. Unexploitable chromatograms and quality checking lead us to eliminate 19,941 sequences. Finally a total of 125,925 ESTs were retained from 111,361 cDNA clones. Pyrosequencing was also conducted for 14 libraries, generating 1,948,579 reads, from which 370,566 sequences (19.0%) were eliminated, resulting in 1,578,192 sequences. Following clustering and assembly using TGICL pipeline, 1,704,117 EST sequences collapsed into 69,154 tentative contigs and 153,517 singletons, providing 222,671 non-redundant sequences (including alternative transcripts). We also assembled the sequences using MIRA and PartiGene software and compared the three unigene sets. Gene ontology annotation was then assigned to 29,303 unigene elements. Blast search against the SWISS-PROT database revealed putative homologs for 32,810 (14.7%) unigene elements, but more extensive search with Pfam, Refseq_protein, Refseq_RNA and eight gene indices revealed homology for 67.4% of them. The EST catalogue was examined for putative homologs of candidate genes involved in bud phenology, cuticle formation, phenylpropanoids biosynthesis and cell wall formation. Our results suggest a good coverage of genes involved in these traits. Comparative orthologous sequences (COS) with other plant gene models were identified and allow to unravel the oak paleo-history. Simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs) were searched, resulting in 52,834 SSRs and 36,411 SNPs. All of these are available through the Oak Contig Browser http://genotoul-contigbrowser.toulouse.inra.fr:9092/Quercus_robur/index.html.ConclusionsThis genomic resource provides a unique tool to discover genes of interest, study the oak transcriptome, and develop new markers to investigate functional diversity in natural populations.


Functional Plant Biology | 2012

Is mesophyll conductance to CO2 in leaves of three Eucalyptus species sensitive to short-term changes of irradiance under ambient as well as low O2?

Cyril Douthe; Erwin Dreyer; Oliver Brendel; Charles R. Warren C; A Inra

Mesophyll conductance to CO2 (g m) limits the diffusion of CO2 to the sites of carboxylation, and may respond rapidly (within minutes) to abiotic factors. Using three Eucalyptus species, we tested the rapid response of g m to irradiance under 21% and 1% O2. We used simultaneous measurements of leaf gas exchange and discrimination against 13CO2 with a tuneable diode laser absorption spectrometer. Measurements under 1% O2 were used to limit uncertainties due to 13C-12C fractionation occurring during photorespiration. Switching irradiance from 600 to 200µmolm-2s-1 led to a ≈60% decrease of g m within minutes in all species under both 21% O2 and 1% O2. The g m response to irradiance is unlikely to be a computation artefact since using different values for the parameters of the discrimination model changed the absolute values of g m but did not affect the relative response to irradiance. Simulations showed that possible rapid changes of any parameter were unable to explain the observed variations of g m with irradiance, except for13C-12C fractionation during carboxylation (b), which, in turn, is dependent on the fraction of leaf C assimilated by phospho-enol pyruvate carboxylase (PEPc) (β). g m apparently increased by ≈30% when O2 was switched from 21% to 1% O2. Again, possible changes of β with O2 could explain this apparent g m response to O2. Nevertheless, large irradiance or O2-induced changes in β would be required to fully explain the observed changes in g m, reinforcing the hypothesis that g m is responsive to irradiance and possibly also to O2.


New Phytologist | 2016

Effects of kinetics of light‐induced stomatal responses on photosynthesis and water‐use efficiency

Lorna McAusland; Silvere Vialet-Chabrand; P. A. Davey; Neil R. Baker; Oliver Brendel; Tracy Lawson

Summary Both photosynthesis (A) and stomatal conductance (g s) respond to changing irradiance, yet stomatal responses are an order of magnitude slower than photosynthesis, resulting in noncoordination between A and g s in dynamic light environments. Infrared gas exchange analysis was used to examine the temporal responses and coordination of A and g s to a step increase and decrease in light in a range of different species, and the impact on intrinsic water use efficiency was evaluated. The temporal responses revealed a large range of strategies to save water or maximize photosynthesis in the different species used in this study but also displayed an uncoupling of A and g s in most of the species. The shape of the guard cells influenced the rapidity of response and the overall g s values achieved, with different impacts on A and W i. The rapidity of g s in dumbbell‐shaped guard cells could be attributed to size, whilst in elliptical‐shaped guard cells features other than anatomy were more important for kinetics. Our findings suggest significant variation in the rapidity of stomatal responses amongst species, providing a novel target for improving photosynthesis and water use.


Plant Cell and Environment | 2013

Performance of a new dynamic model for predicting diurnal time courses of stomatal conductance at the leaf level

Silvère Vialet-Chabrand; Erwin Dreyer; Oliver Brendel

Under natural conditions, plants are subjected to continuous changes of irradiance that drive variations of stomatal conductance to water vapour (g(s)). We propose a dynamic model to predict the temporal response of g(s) at the leaf level using an asymmetric sigmoid function with a unique parameter describing time constants for increasing and decreasing g(s). The model parameters were adjusted to observed data using Approximate Bayesian Computation. We tested the model performance for (1) instant changes of irradiance; or (2) continuous and controlled variations of irradiance simulating diurnal time courses. Compared with the two mostly used steady-state models, our dynamic model described daily time courses of g(s) with a higher accuracy. In particular, it was able to describe the hysteresis of g(s) responses to increasing/decreasing irradiance and the resulting rapid variations of intrinsic water-use efficiency. Compared to the mechanistic model of temporal responses of g(s) by Kirschbaum, Gross & Pearcy, for which time constants were estimated with a large variance, our model estimated time constants with a higher precision. It is expected to improve predictions of water loss and water-use efficiency in higher scale models by using a small number of parameters.


Journal of Experimental Botany | 2014

The genetics of water-use efficiency and its relation to growth in maritime pine

Elisa Marguerit; Laurent Bouffier; Emilie Chancerel; Paolo Costa; Frédéric Lagane; Jean-Marc Guehl; Christophe Plomion; Oliver Brendel

To meet the increasing demand of wood biomass worldwide in the context of climate change, developing improved forest tree varieties for high productivity in water-limited conditions is becoming a major issue. This involves breeding for genotypes combining high growth and moderate water loss and thus high water-use efficiency (WUE). The present work provides original data about the genetics of intrinsic WUE (the ratio between net CO2 assimilation rate and stomatal conductance, also estimated by carbon isotope composition of plant material; δ13C) and its relation to growth in Pinus pinaster Ait. First, heritability for δ13C was estimated (0.29) using a 15-year-old progeny trial (Landes provenance), with no significant differences among three sites contrasting in water availability. High intersite correlations (0.63–0.91) and significant but low genotype–environment interactions were detected. Secondly, the genetic architectures of δ13C and growth were studied in a three-generation inbred pedigree, introducing the genetic background of a more-drought-adapted parent (Corsican provenance), at ages of 2 years (greenhouse) and 9 years (plantation). One of the quantitative trait loci (QTLs) identified in the field experiment, explaining 67% of the phenotypic variance, was also found among the QTLs detected in the greenhouse experiment, where it colocalized with QTLs for intrinsic WUE and stomatal conductance. This work was able to show that higher WUE was not genetically linked to less growth, allowing thus genetic improvement of water use. As far as is known, the heritability and QTL effects estimated here are based on the highest number of genotypes measured to date.


Plant Science | 2016

Modelling water use efficiency in a dynamic environment: An example using Arabidopsis thaliana.

Silvere Vialet-Chabrand; Jack S.A. Matthews; Oliver Brendel; Michael R. Blatt; Yizhou Wang; Adrian Hills; Howard Griffiths; Simon Rogers; Tracy Lawson

Highlights • A model scaling stoma behaviour at leaf level is proposed.• The model is tested by reproducing natural variations of light intensity.• Stomatal aperture and photosynthesis decrease as a function of sugar accumulation.• Leaf anatomy influences the rapidity of stomatal conductance.• The model dissects intrinsic water use efficiency into traits of interest.

Collaboration


Dive into the Oliver Brendel's collaboration.

Top Co-Authors

Avatar

Christophe Plomion

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antoine Kremer

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Cyril Douthe

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jaume Flexas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Marc Guehl

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Catherine Bodénès

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Cyril Bure

University of Lorraine

View shared research outputs
Top Co-Authors

Avatar

David Cohen

University of Lorraine

View shared research outputs
Researchain Logo
Decentralizing Knowledge