Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oliver Burren is active.

Publication


Featured researches published by Oliver Burren.


Nature Genetics | 2007

Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes

John A. Todd; Neil M Walker; Jason D. Cooper; Deborah J. Smyth; Kate Downes; Vincent Plagnol; Rebecca Bailey; Sergey Nejentsev; Sarah Field; Felicity Payne; Christopher E. Lowe; Jeffrey S. Szeszko; Jason P. Hafler; Lauren Zeitels; Jennie H. M. Yang; Adrian Vella; Sarah Nutland; Helen Stevens; Helen Schuilenburg; Gillian Coleman; Meeta Maisuria; William Meadows; Luc J. Smink; Barry Healy; Oliver Burren; Alex C. Lam; Nigel R Ovington; James E Allen; Ellen C. Adlem; Hin-Tak Leung

The Wellcome Trust Case Control Consortium (WTCCC) primary genome-wide association (GWA) scan on seven diseases, including the multifactorial autoimmune disease type 1 diabetes (T1D), shows associations at P < 5 × 10−7 between T1D and six chromosome regions: 12q24, 12q13, 16p13, 18p11, 12p13 and 4q27. Here, we attempted to validate these and six other top findings in 4,000 individuals with T1D, 5,000 controls and 2,997 family trios independent of the WTCCC study. We confirmed unequivocally the associations of 12q24, 12q13, 16p13 and 18p11 (Pfollow-up ≤ 1.35 × 10−9; Poverall ≤ 1.15 × 10−14), leaving eight regions with small effects or false-positive associations. We also obtained evidence for chromosome 18q22 (Poverall = 1.38 × 10−8) from a GWA study of nonsynonymous SNPs. Several regions, including 18q22 and 18p11, showed association with autoimmune thyroid disease. This study increases the number of T1D loci with compelling evidence from six to at least ten.


Nature Genetics | 2006

A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region.

Deborah J. Smyth; Jason D. Cooper; Rebecca Bailey; Sarah Field; Oliver Burren; Luc J. Smink; Cristian Guja; Constantin Ionescu-Tirgoviste; Barry Widmer; David B. Dunger; David A. Savage; Neil M Walker; David G. Clayton; John A. Todd

In this study we report convincing statistical support for a sixth type 1 diabetes (T1D) locus in the innate immunity viral RNA receptor gene region IFIH1 (also known as mda-5 or Helicard) on chromosome 2q24.3. We found the association in an interim analysis of a genome-wide nonsynonymous SNP (nsSNP) scan, and we validated it in a case-control collection and replicated it in an independent family collection. In 4,253 cases, 5,842 controls and 2,134 parent-child trio genotypes, the risk ratio for the minor allele of the nsSNP rs1990760 A → G (A946T) was 0.86 (95% confidence interval = 0.82–0.90) at P = 1.42 × 10−10.


Nature Genetics | 2009

Cell-specific protein phenotypes for the autoimmune locus IL2RA using a genotype-selectable human bioresource

Calliope A. Dendrou; Vincent Plagnol; Erik Fung; Jennie H. M. Yang; Kate Downes; Jason D. Cooper; Sarah Nutland; Gillian Coleman; Matthew Himsworth; Matthew Hardy; Oliver Burren; Barry Healy; Neil M Walker; Kerstin Koch; Willem H. Ouwehand; John R. Bradley; Nicholas J. Wareham; John A. Todd; Linda S. Wicker

Genome-wide association studies (GWAS) have identified over 300 regions associated with more than 70 common diseases. However, identifying causal genes within an associated region remains a major challenge. One approach to resolving causal genes is through the dissection of gene-phenotype correlations. Here we use polychromatic flow cytometry to show that differences in surface expression of the human interleukin-2 (IL-2) receptor alpha (IL2RA, or CD25) protein are restricted to particular immune cell types and correlate with several haplotypes in the IL2RA region that have previously been associated with two autoimmune diseases, type 1 diabetes (T1D) and multiple sclerosis. We confirm our strongest gene-phenotype correlation at the RNA level by allele-specific expression (ASE). We also define key parameters for the design and implementation of post-GWAS gene-phenotype investigations and demonstrate the usefulness of a large bioresource of genotype-selectable normal donors from whom fresh, primary cells can be analyzed.


Diabetes | 2011

Inherited Variation in Vitamin D Genes Is Associated With Predisposition to Autoimmune Disease Type 1 Diabetes

Jason D. Cooper; Deborah J. Smyth; Neil Walker; Helen Stevens; Oliver Burren; Chris Wallace; Christopher Greissl; Elizabeth Ramos-Lopez; Elina Hyppönen; David B. Dunger; Tim D. Spector; Willem H. Ouwehand; Thomas J. Wang; Klaus Badenhoop; John A. Todd

OBJECTIVE Vitamin D deficiency (25-hydroxyvitamin D [25(OH)D] <50 nmol/L) is commonly reported in both children and adults worldwide, and growing evidence indicates that vitamin D deficiency is associated with many extraskeletal chronic disorders, including the autoimmune diseases type 1 diabetes and multiple sclerosis. RESEARCH DESIGN AND METHODS We measured 25(OH)D concentrations in 720 case and 2,610 control plasma samples and genotyped single nucleotide polymorphisms from seven vitamin D metabolism genes in 8,517 case, 10,438 control, and 1,933 family samples. We tested genetic variants influencing 25(OH)D metabolism for an association with both circulating 25(OH)D concentrations and disease status. RESULTS Type 1 diabetic patients have lower circulating levels of 25(OH)D than similarly aged subjects from the British population. Only 4.3 and 18.6% of type 1 diabetic patients reached optimal levels (≥75 nmol/L) of 25(OH)D for bone health in the winter and summer, respectively. We replicated the associations of four vitamin D metabolism genes (GC, DHCR7, CYP2R1, and CYP24A1) with 25(OH)D in control subjects. In addition to the previously reported association between type 1 diabetes and CYP27B1 (P = 1.4 × 10−4), we obtained consistent evidence of type 1 diabetes being associated with DHCR7 (P = 1.2 × 10−3) and CYP2R1 (P = 3.0 × 10−3). CONCLUSIONS Circulating levels of 25(OH)D in children and adolescents with type 1 diabetes vary seasonally and are under the same genetic control as in the general population but are much lower. Three key 25(OH)D metabolism genes show consistent evidence of association with type 1 diabetes risk, indicating a genetic etiological role for vitamin D deficiency in type 1 diabetes.


Nature | 2013

Negligible impact of rare autoimmune-locus coding-region variants on missing heritability

Karen A. Hunt; Vanisha Mistry; Nicholas A. Bockett; Tariq Ahmad; Maria Ban; Jonathan Barker; Jeffrey C. Barrett; Hannah Blackburn; Oliver J. Brand; Oliver Burren; Francesca Capon; Alastair Compston; Stephen C. L. Gough; Luke Jostins; Yong Kong; James C. Lee; Monkol Lek; Daniel G. MacArthur; John C. Mansfield; Christopher G. Mathew; Charles A. Mein; Muddassar M. Mirza; Sarah Nutland; Suna Onengut-Gumuscu; Efterpi Papouli; Miles Parkes; Stephen S. Rich; Steven Sawcer; Jack Satsangi; Matthew J. Simmonds

Genome-wide association studies (GWAS) have identified common variants of modest-effect size at hundreds of loci for common autoimmune diseases; however, a substantial fraction of heritability remains unexplained, to which rare variants may contribute. To discover rare variants and test them for association with a phenotype, most studies re-sequence a small initial sample size and then genotype the discovered variants in a larger sample set. This approach fails to analyse a large fraction of the rare variants present in the entire sample set. Here we perform simultaneous amplicon-sequencing-based variant discovery and genotyping for coding exons of 25 GWAS risk genes in 41,911 UK residents of white European origin, comprising 24,892 subjects with six autoimmune disease phenotypes and 17,019 controls, and show that rare coding-region variants at known loci have a negligible role in common autoimmune disease susceptibility. These results do not support the rare-variant synthetic genome-wide-association hypothesis (in which unobserved rare causal variants lead to association detected at common tag variants). Many known autoimmune disease risk loci contain multiple, independently associated, common and low-frequency variants, and so genes at these loci are a priori stronger candidates for harbouring rare coding-region variants than other genes. Our data indicate that the missing heritability for common autoimmune diseases may not be attributable to the rare coding-region variant portion of the allelic spectrum, but perhaps, as others have proposed, may be a result of many common-variant loci of weak effect.


Cell | 2016

Lineage-Specific Genome Architecture Links Enhancers and Non-coding Disease Variants to Target Gene Promoters

Biola-Maria Javierre; Oliver Burren; Steven P. Wilder; Kreuzhuber R; Hill Sm; Sven Sewitz; Jonathan Cairns; Steven W. Wingett; Csilla Várnai; Thiecke Mj; Frances Burden; Samantha Farrow; Antony J. Cutler; Karola Rehnström; Kate Downes; Luigi Grassi; Myrto Kostadima; Paula Freire-Pritchett; Wang F; Hendrik G. Stunnenberg; John A. Todd; Daniel R. Zerbino; Oliver Stegle; Willem H. Ouwehand; Mattia Frontini; Chris Wallace; Mikhail Spivakov; Peter Fraser

Summary Long-range interactions between regulatory elements and gene promoters play key roles in transcriptional regulation. The vast majority of interactions are uncharted, constituting a major missing link in understanding genome control. Here, we use promoter capture Hi-C to identify interacting regions of 31,253 promoters in 17 human primary hematopoietic cell types. We show that promoter interactions are highly cell type specific and enriched for links between active promoters and epigenetically marked enhancers. Promoter interactomes reflect lineage relationships of the hematopoietic tree, consistent with dynamic remodeling of nuclear architecture during differentiation. Interacting regions are enriched in genetic variants linked with altered expression of genes they contact, highlighting their functional role. We exploit this rich resource to connect non-coding disease variants to putative target promoters, prioritizing thousands of disease-candidate genes and implicating disease pathways. Our results demonstrate the power of primary cell promoter interactomes to reveal insights into genomic regulatory mechanisms underlying common diseases.


Nature Communications | 2015

Widespread seasonal gene expression reveals annual differences in human immunity and physiology.

Xaquin Castro Dopico; Marina Evangelou; Ricardo C. Ferreira; Hui Guo; Marcin L. Pekalski; Deborah J. Smyth; Nicholas J. Cooper; Oliver Burren; Anthony J. Fulford; Branwen J. Hennig; Andrew M. Prentice; Anette G. Ziegler; Ezio Bonifacio; Chris Wallace; John A. Todd

Seasonal variations are rarely considered a contributing component to human tissue function or health, although many diseases and physiological process display annual periodicities. Here we find more than 4,000 protein-coding mRNAs in white blood cells and adipose tissue to have seasonal expression profiles, with inverted patterns observed between Europe and Oceania. We also find the cellular composition of blood to vary by season, and these changes, which differ between the United Kingdom and The Gambia, could explain the gene expression periodicity. With regards to tissue function, the immune system has a profound pro-inflammatory transcriptomic profile during European winter, with increased levels of soluble IL-6 receptor and C-reactive protein, risk biomarkers for cardiovascular, psychiatric and autoimmune diseases that have peak incidences in winter. Circannual rhythms thus require further exploration as contributors to various aspects of human physiology and disease.


Diabetes | 2014

A type I interferon transcriptional signature precedes autoimmunity in children genetically at risk for type 1 diabetes.

Ricardo C. Ferreira; Hui Guo; Richard M. R. Coulson; Deborah J. Smyth; Marcin L. Pekalski; Oliver Burren; Antony J. Cutler; James D. Doecke; Shaun M. Flint; Eoin F. McKinney; Paul A. Lyons; Kenneth G. C. Smith; Peter Achenbach; Andreas Beyerlein; David B. Dunger; David G. Clayton; Linda S. Wicker; John A. Todd; Ezio Bonifacio; Chris Wallace; Anette-G. Ziegler

Diagnosis of the autoimmune disease type 1 diabetes (T1D) is preceded by the appearance of circulating autoantibodies to pancreatic islets. However, almost nothing is known about events leading to this islet autoimmunity. Previous epidemiological and genetic data have associated viral infections and antiviral type I interferon (IFN) immune response genes with T1D. Here, we first used DNA microarray analysis to identify IFN-β–inducible genes in vitro and then used this set of genes to define an IFN-inducible transcriptional signature in peripheral blood mononuclear cells from a group of active systemic lupus erythematosus patients (n = 25). Using this predefined set of 225 IFN signature genes, we investigated the expression of the signature in cohorts of healthy controls (n = 87), patients with T1D (n = 64), and a large longitudinal birth cohort of children genetically predisposed to T1D (n = 109; 454 microarrayed samples). Expression of the IFN signature was increased in genetically predisposed children before the development of autoantibodies (P = 0.0012) but not in patients with established T1D. Upregulation of IFN-inducible genes was transient, temporally associated with a recent history of upper respiratory tract infections (P = 0.0064), and marked by increased expression of SIGLEC-1 (CD169), a lectin-like receptor expressed on CD14+ monocytes. DNA variation in IFN-inducible genes altered T1D risk (P = 0.007), as exemplified by IFIH1, one of the genes in our IFN signature for which increased expression is a known risk factor for disease. These findings identify transient increased expression of type I IFN genes in preclinical diabetes as a risk factor for autoimmunity in children with a genetic predisposition to T1D.


Human Molecular Genetics | 2012

Long-range DNA looping and gene expression analyses identify DEXI as an autoimmune disease candidate gene

L. J. Davison; Chris Wallace; Jason D. Cooper; Nathan F. Cope; Nicola K. Wilson; Deborah J. Smyth; Joanna M. M. Howson; Nada Saleh; Abdullah Al-Jeffery; Karen L. Angus; Helen Stevens; Sarah Nutland; Simon Duley; Richard M. R. Coulson; Neil M Walker; Oliver Burren; Catherine M. Rice; François Cambien; Tanja Zeller; Thomas Münzel; Karl J. Lackner; Stefan Blankenberg; Peter Fraser; Berthold Göttgens; John A. Todd

The chromosome 16p13 region has been associated with several autoimmune diseases, including type 1 diabetes (T1D) and multiple sclerosis (MS). CLEC16A has been reported as the most likely candidate gene in the region, since it contains the most disease-associated single-nucleotide polymorphisms (SNPs), as well as an imunoreceptor tyrosine-based activation motif. However, here we report that intron 19 of CLEC16A, containing the most autoimmune disease-associated SNPs, appears to behave as a regulatory sequence, affecting the expression of a neighbouring gene, DEXI. The CLEC16A alleles that are protective from T1D and MS are associated with increased expression of DEXI, and no other genes in the region, in two independent monocyte gene expression data sets. Critically, using chromosome conformation capture (3C), we identified physical proximity between the DEXI promoter region and intron 19 of CLEC16A, separated by a loop of >150 kb. In reciprocal experiments, a 20 kb fragment of intron 19 of CLEC16A, containing SNPs associated with T1D and MS, as well as with DEXI expression, interacted with the promotor region of DEXI but not with candidate DNA fragments containing other potential causal genes in the region, including CLEC16A. Intron 19 of CLEC16A is highly enriched for transcription-factor-binding events and markers associated with enhancer activity. Taken together, these data indicate that although the causal variants in the 16p13 region lie within CLEC16A, DEXI is an unappreciated autoimmune disease candidate gene, and illustrate the power of the 3C approach in progressing from genome-wide association studies results to candidate causal genes.


Nucleic Acids Research | 2011

T1DBase: update 2011, organization and presentation of large-scale data sets for type 1 diabetes research

Oliver Burren; Ellen C. Adlem; Premanand Achuthan; Mikkel Christensen; Richard M. R. Coulson; John A. Todd

T1DBase (http://www.t1dbase.org) is web platform, which supports the type 1 diabetes (T1D) community. It integrates genetic, genomic and expression data relevant to T1D research across mouse, rat and human and presents this to the user as a set of web pages and tools. This update describes the incorporation of new data sets, tools and curation efforts as well as a new website design to simplify site use. New data sets include curated summary data from four genome-wide association studies relevant to T1D, HaemAtlas—a data set and tool to query gene expression levels in haematopoietic cells and a manually curated table of human T1D susceptibility loci, incorporating genetic overlap with other related diseases. These developments will continue to support T1D research and allow easy access to large and complex T1D relevant data sets.

Collaboration


Dive into the Oliver Burren's collaboration.

Top Co-Authors

Avatar

John A. Todd

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hui Guo

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luc J. Smink

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barry Healy

University of Cambridge

View shared research outputs
Researchain Logo
Decentralizing Knowledge