Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oliver C. Steinbach is active.

Publication


Featured researches published by Oliver C. Steinbach.


European Journal of Radiology | 2009

Ultrasound triggered image-guided drug delivery

Marcel Rene Bohmer; Alexander L. Klibanov; Klaus Tiemann; Christopher Stephen Hall; Holger Gruell; Oliver C. Steinbach

The integration of therapeutic interventions with diagnostic imaging has been recognized as one of the next technological developments that will have a major impact on medical treatments. Important advances in this field are based on a combination of progress in guiding and monitoring ultrasound energy, novel drug classes becoming available, the development of smart delivery vehicles, and more in depth understanding of the mechanisms of the cellular and molecular basis of diseases. Recent research demonstrates that both pressure sensitive and temperature sensitive delivery systems hold promise for local treatment. The use of ultrasound for the delivery of drugs has been demonstrated in particular the field of cardiology and oncology for a variety of therapeutics ranging from small drug molecules to biologics and nucleic acids.


Magnetic Resonance in Medicine | 2011

Iopamidol as a responsive MRI-chemical exchange saturation transfer contrast agent for pH mapping of kidneys: In vivo studies in mice at 7 T.

Dario Livio Longo; Walter Dastrù; Giuseppe Digilio; Jochen Keupp; Sander Langereis; Stefania Lanzardo; Simone Prestigio; Oliver C. Steinbach; Enzo Terreno; Fulvio Uggeri; Silvio Aime

Iopamidol (Isovue®—Bracco Diagnostic Inc.) is a clinically approved X‐Ray contrast agent used in the last 30 years for a wide variety of diagnostic applications with a very good clinical acceptance. Iopamidol contains two types of amide functionalities that can be exploited for the generation of chemical exchange saturation transfer effect. The exchange rate of the two amide proton pools is markedly pH‐dependent. Thus, a ratiometric method for pH assessment has been set‐up based on the comparison of the saturation transfer effects induced by selective irradiation of the two resonances. This ratiometric approach allows to rule out the concentration effect of the contrast agent and provides accurate pH measurements in the 5.5–7.4 range. Upon injection of Iopamidol into healthy mice, it has been possible to acquire pH maps of kidney regions. Furthermore, it has been also shown that the proposed method is able to report about pH‐changes induced in control mice fed with acidified or basified water for a period of a week before image acquisition. Magn Reson Med, 2010.


Journal of Magnetic Resonance Imaging | 2014

Initial experience of MR/PET in a clinical cancer center.

Sasan Partovi; Mark R. Robbin; Oliver C. Steinbach; Andres Kohan; Christian Rubbert; Jose Vercher-Conejero; Jeffrey A. Kolthammer; Peter Faulhaber; Raj Mohan Paspulati; Pablo R. Ros

Magentic Resonance/positron emission tomography (PET) has been introduced recently for imaging of clinical patients. This hybrid imaging technology combines the inherent strengths of MRI with its high soft‐tissue contrast and biological sequences with the inherent strengths of PET, enabling imaging of metabolism with a high sensitivity. In this article, we describe the initial experience of MR/PET in a clinical cancer center along with a review of the literature. For establishing MR/PET in a clinical setting, technical challenges, such as attenuation correction and organizational challenges, such as workflow and reimbursement, have to be overcome. The most promising initial results of MR/PET have been achieved in anatomical areas where high soft‐tissue and contrast resolution is of benefit. Head and neck cancer and pelvic imaging are potential applications of this hybrid imaging technology. In the pediatric population, MR/PET can decrease the lifetime radiation dose. MR/PET protocols tailored to different types of malignancies need to be developed. After the initial exploration phase, large multicenter trials are warranted to determine clinical indications for this exciting hybrid imaging technology and thereby opening new horizons in molecular imaging. J. Magn. Reson. Imaging 2014;39:768–780.


Applied Radiation and Isotopes | 2012

Automated synthesis of [18F]gefitinib on a modular system.

Tilman Läppchen; Maria Vlaming; Erica Custers; Johan Lub; Charles Frederik Sio; Jeroen DeGroot; Oliver C. Steinbach

In recent years, [(18)F]gefitinib PET has successfully been employed for a number of applications ranging from oncology to in vivo studies of drug transporter proteins. We here report a reliable, automated procedure for routine synthesis of this radiotracer on an Eckert and Ziegler modular system. The 3-step radiosynthesis followed by preparative HPLC-purification provided [(18)F]gefitinib in 17.2±3.3% (n=22) overall decay-corrected radiochemical yield with radiochemical purity >99% in a total synthesis time of about 2.5h.


Nuclear Medicine and Biology | 2015

PET-CT imaging with [18F]-gefitinib to measure Abcb1a/1b (P-gp) and Abcg2 (Bcrp1) mediated drug-drug interactions at the murine blood-brain barrier

M.L.H. Vlaming; Tilman Läppchen; Harm T. Jansen; Suzanne Kivits; Andy van Driel; Evita van de Steeg; José W. van der Hoorn; Charles Frederik Sio; Oliver C. Steinbach; Jeroen DeGroot

INTRODUCTION The efflux transporters P-glycoprotein (P-gp, ABCB1) and breast cancer resistance protein (BCRP, ABCG2) are expressed at the blood-brain barrier (BBB), and can limit the access of a wide range of drugs to the brain. In this study we developed a PET-CT imaging method for non-invasive, quantitative analysis of the effect of ABCB1 and ABCG2 on brain penetration of the anti-cancer drug gefitinib, and demonstrated the applicability of this method for identification and quantification of potential modulators of ABCB1 and ABCB2 using the dual inhibitor elacridar. METHODS In vitro cellular accumulation studies with [(14)C]-gefitinib were conducted in LLC-PK1, MDCKII, and the corresponding ABCB1/Abcb1a and ABCG2/Abcg2 overexpressing cell lines. Subsequently, in vivo brain penetration of [(18)F]-gefitinib was quantified by PET-CT imaging studies in wild-type, Abcg2(-/-), Abcb1a/1b(-/-), and Abcb1a/1b;Abcg2(-/-) mice. RESULTS In vitro studies showed that [(14)C]-gefitinib is a substrate of the human ABCB1 and ABCG2 transporters. After i.v. administration of [(18)F]-gefitinib (1mg/kg), PET-CT imaging showed 2.3-fold increased brain levels of [(18)F]-gefitinib in Abcb1a/1b;Abcg2(-/-) mice, compared to wild-type. Levels in single knockout animals were not different from wild-type, showing that Abcb1a/1b and Abcg2 together limit access of [(18)F]-gefitinib to the brain. Furthermore, enhanced brain accumulation of [(18)F]-gefitinib after administration of the ABCB1 and ABCG2 inhibitor elacridar (10 mg/kg) could be quantified with PET-CT imaging. CONCLUSIONS PET-CT imaging with [(18)F]-gefitinib is a powerful tool to non-invasively assess potential ABCB1- and ABCG2-mediated drug-drug interactions (DDIs) in vivo. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE This minimally-invasive, [(18)F]-based PET-CT imaging method shows the interplay of ABCB1 and ABCG2 at the BBB in vivo. The method may be applied in the future to assess ABCB1 and ABCG2 activity at the BBB in humans, and for personalized treatment with drugs that are substrates of ABCB1 and/or ABCG2.


Therapeutic Delivery | 2011

See, reach, treat: ultrasound-triggered image-guided drug delivery

Pedro Gomes Sanches; Holger Grüll; Oliver C. Steinbach


Therapeutic Delivery | 2013

An industry update: the latest developments in therapeutic delivery

Oliver C. Steinbach


Archive | 2016

MRI WITH IMPROVED SEGMENTATION IN THE PRESENCE OF SUSCEPTIBILITY ARTIFACTS

Oliver C. Steinbach; Andres Alejandro Kohan; Christian Rubbert


The Journal of Nuclear Medicine | 2011

PET imaging of transporter mediated drug-drug interactions at the murine blood-brain barrier using [18F]-gefitinib

Tilman Läppchen; Maria Vlaming; Charles Frederik Sio; Oliver C. Steinbach; Jeroen DeGroot


Atherosclerosis Supplements | 2011

877 IN VIVO MRS ANALYSIS OF NON-ALCOHOLIC FATTY LIVER DISEASE IN A TRANSLATIONAL MODEL FOR THE METABOLIC SYNDROME

J van der Hoorn; R.A. van de Molengraaf; Rami Nachabe; Jeroen A. Pikkemaat; Maria Vlaming; Charles Frederik Sio; Rolf Lamerichs; Jeroen DeGroot; Oliver C. Steinbach

Collaboration


Dive into the Oliver C. Steinbach's collaboration.

Researchain Logo
Decentralizing Knowledge