Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oliver G. Bosch is active.

Publication


Featured researches published by Oliver G. Bosch.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Sleep deprivation increases dorsal nexus connectivity to the dorsolateral prefrontal cortex in humans

Oliver G. Bosch; Julia S. Rihm; M Scheidegger; Hans-Peter Landolt; Philipp Stämpfli; Janis Brakowski; Fabrizio Esposito; Björn Rasch; Erich Seifritz

Significance Major depressive disorder is a significant contributor to the global burden of disease, affecting 350 million people according to an estimation of the World Health Organization. Today, no valid biomarkers of depression, which could predict the efficacy of a certain treatment in a certain group of patients, exist. Sleep deprivation is an effective and rapid-acting antidepressive treatment. However, the biomechanism of this effect is largely unknown. This study shows the effects of sleep deprivation on human brain functional connectivity alterations via the dorsal nexus, an area which is crucial in major depressive disorder. Here, we offer a neurobiological explanation for the known antidepressive action of sleep deprivation. In many patients with major depressive disorder, sleep deprivation, or wake therapy, induces an immediate but often transient antidepressant response. It is known from brain imaging studies that changes in anterior cingulate and dorsolateral prefrontal cortex activity correlate with a relief of depression symptoms. Recently, resting-state functional magnetic resonance imaging revealed that brain network connectivity via the dorsal nexus (DN), a cortical area in the dorsomedial prefrontal cortex, is dramatically increased in depressed patients. To investigate whether an alteration in DN connectivity could provide a biomarker of therapy response and to determine brain mechanisms of action underlying sleep deprivations antidepressant effects, we examined its influence on resting state default mode network and DN connectivity in healthy humans. Our findings show that sleep deprivation reduced functional connectivity between posterior cingulate cortex and bilateral anterior cingulate cortex (Brodmann area 32), and enhanced connectivity between DN and distinct areas in right dorsolateral prefrontal cortex (Brodmann area 10). These findings are consistent with resolution of dysfunctional brain network connectivity changes observed in depression and suggest changes in prefrontal connectivity with the DN as a brain mechanism of antidepressant therapy action.


Journal of Psychopharmacology | 2012

Reconsidering GHB: orphan drug or new model antidepressant?

Oliver G. Bosch; Boris B. Quednow; Erich Seifritz; Thomas C. Wetter

For six decades, the principal mode of action of antidepressant drugs is the inhibition of monoamine re-uptake from the synaptic cleft. Tricyclic antidepressants, selective serotonin re-uptake inhibitors (SSRIs) and the new generation of dual antidepressants all exert their antidepressant effects by this mechanism. In the early days of the monoaminergic era, other efforts have been made to ameliorate the symptoms of depression by pharmacological means. The gamma-aminobutyric acid (GABA) system was and possibly still is one of the main alternative drug targets. Gammahydroxybutyrate (GHB) was developed as an orally active GABA analogue. It was tested in animal models of depression and human studies. The effects on sleep, agitation, anhedonia and depression were promising. However, the rise of benzodiazepines and tricyclic antidepressants brought GHB out of the scope of possible treatment alternatives. GHB is a GABAB and GHB receptor agonist with a unique spectrum of behavioural, neuroendocrine and sleep effects, and improves daytime sleepiness in various disorders such as narcolepsy, Parkinson’s disease and fibromyalgia. Although it was banned from the US market at the end of the 1990s because of its abuse and overdose potential, it later was approved for the treatment of narcolepsy. New research methods and an extended view on other neurotransmitter systems as possible treatment targets of antidepressant treatment brought GHB back to the scene. This article discusses the unique neurobiological effects of GHB, its misuse potential and possible role as a model substance for the development of novel pharmacological treatment strategies in depressive disorders.


Journal of Chromatography B | 2015

A quantitiative LC-MS/MS method for the measurement of arachidonic acid, prostanoids, endocannabinoids, N-acylethanolamines and steroids in human plasma

María Salomé Gachet; Peter Rhyn; Oliver G. Bosch; Boris B. Quednow; Jürg Gertsch

Free arachidonic acid is functionally interlinked with different lipid signaling networks including those involving prostanoid pathways, the endocannabinoid system, N-acylethanolamines, as well as steroids. A sensitive and specific LC-MS/MS method for the quantification of arachidonic acid, prostaglandin E2, thromboxane B2, anandamide, 2-arachidonoylglycerol, noladin ether, lineoyl ethanolamide, oleoyl ethanolamide, palmitoyl ethanolamide, steroyl ethanolamide, aldosterone, cortisol, dehydroepiandrosterone, progesterone, and testosterone in human plasma was developed and validated. Analytes were extracted using acetonitrile precipitation followed by solid phase extraction. Separations were performed by UFLC using a C18 column and analyzed on a triple quadrupole MS with electron spray ionization. Analytes were run first in negative mode and, subsequently, in positive mode in two independent LC-MS/MS runs. For each analyte, two MRM transitions were collected in order to confirm identity. All analytes showed good linearity over the investigated concentration range (r>0.98). Validated LLOQs ranged from 0.1 to 190ng/mL and LODs ranged from 0.04 to 12.3ng/mL. Our data show that this LC-MS/MS method is suitable for the quantification of a diverse set of bioactive lipids in plasma from human donors (n=32). The determined plasma levels are in agreement with the literature, thus providing a versatile method to explore pathophysiological processes in which changes of these lipids are implicated.


World Journal of Biological Psychiatry | 2012

Stress-related depression: Neuroendocrine, genetic, and therapeutical aspects

Oliver G. Bosch; Erich Seifritz; Thomas C. Wetter

Objective. To summarize current concepts on neuroendocrine and genetic principles underlying stress-related depression and to discuss the challenges of personalized treatment in depression. Methods. Review of the literature pertaining to genetic and neuroendocrine basis of stress-related depression including aspects of treatment response with a focus on the hypothalamus-pituitary-adrenal (HPA) axis. Results. There is increasing evidence that genetic polymorphisms and dysregulation of the HPA axis are associated with the pathophysiology of stress-related depression. Individual stress hormone reactivity seems to be determined by a combination of genetic and environmental factors, contributing to both, resilience or vulnerability. Conclusions. Although substantial progress has been made, current knowledge is still limited. Further basic and clinical research is needed to identify specific subgroups and to minimize heterogeneity of the depression phenotype. A better characterization is essential to detect genetic and functional predictors of antidepressant treatment response to follow the vision of personalized therapy in psychiatry.


PLOS ONE | 2013

Verbal Memory Deficits Are Correlated with Prefrontal Hypometabolism in 18FDG PET of Recreational MDMA Users

Oliver G. Bosch; Michael Wagner; Frank Jessen; Kai-Uwe Kühn; Alexius Joe; Erich Seifritz; Wolfgang Maier; Hans-Jürgen Biersack; Boris B. Quednow

Introduction 3,4-Methylenedioxymethamphetamine (MDMA, “ecstasy”) is a recreational club drug with supposed neurotoxic effects selectively on the serotonin system. MDMA users consistently exhibit memory dysfunction but there is an ongoing debate if these deficits are induced mainly by alterations in the prefrontal or mediotemporal cortex, especially the hippocampus. Thus, we investigated the relation of verbal memory deficits with alterations of regional cerebral brain glucose metabolism (rMRGlu) in recreational MDMA users. Methods Brain glucose metabolism in rest was assessed using 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography (18FDG PET) in 19 male recreational users of MDMA and 19 male drug-naïve controls. 18FDG PET data were correlated with memory performance assessed with a German version of the Rey Auditory Verbal Learning Test. Results As previously shown, MDMA users showed significant impairment in verbal declarative memory performance. PET scans revealed significantly decreased rMRGlu in the bilateral dorsolateral prefrontal and inferior parietal cortex, bilateral thalamus, right hippocampus, right precuneus, right cerebellum, and pons (at the level of raphe nuclei) of MDMA users. Among MDMA users, learning and recall were positively correlated with rMRGlu predominantly in bilateral frontal and parietal brain regions, while recognition was additionally related to rMRGlu in the right mediotemporal and bihemispheric lateral temporal cortex. Moreover, cumulative lifetime dose of MDMA was negatively correlated with rMRGlu in the left dorsolateral and bilateral orbital and medial PFC, left inferior parietal and right lateral temporal cortex. Conclusions Verbal learning and recall deficits of recreational MDMA users are correlated with glucose hypometabolism in prefrontal and parietal cortex, while word recognition was additionally correlated with mediotemporal hypometabolism. We conclude that memory deficits of MDMA users arise from combined fronto-parieto-mediotemporal dysfunction.


Journal of Psychiatric Research | 2017

Resting state brain network function in major depression – Depression symptomatology, antidepressant treatment effects, future research

Janis Brakowski; Simona Spinelli; Nadja Dörig; Oliver G. Bosch; Andrei Manoliu; Martin Grosse Holtforth; Erich Seifritz

The alterations of functional connectivity brain networks in major depressive disorder (MDD) have been subject of a large number of studies. Using different methodologies and focusing on diverse aspects of the disease, research shows heterogeneous results lacking integration. Disrupted network connectivity has been found in core MDD networks like the default mode network (DMN), the central executive network (CEN), and the salience network, but also in cerebellar and thalamic circuitries. Here we review literature published on resting state brain network function in MDD focusing on methodology, and clinical characteristics including symptomatology and antidepressant treatment related findings. There are relatively few investigations concerning the qualitative aspects of symptomatology of MDD, whereas most studies associate quantitative aspects with distinct resting state functional connectivity alterations. Such depression severity associated alterations are found in the DMN, frontal, cerebellar and thalamic brain regions as well as the insula and the subgenual anterior cingulate cortex. Similarly, different therapeutical options in MDD and their effects on brain function showed patchy results. Herein, pharmaceutical treatments reveal functional connectivity alterations throughout multiple brain regions notably the DMN, fronto-limbic, and parieto-temporal regions. Psychotherapeutical interventions show significant functional connectivity alterations in fronto-limbic networks, whereas electroconvulsive therapy and repetitive transcranial magnetic stimulation result in alterations of the subgenual anterior cingulate cortex, the DMN, the CEN and the dorsal lateral prefrontal cortex. While it appears clear that functional connectivity alterations are associated with the pathophysiology and treatment of MDD, future research should also generate a common strategy for data acquisition and analysis, as a least common denominator, to set the basis for comparability across studies and implementation of functional connectivity as a scientifically and clinically useful biomarker.


Psychoneuroendocrinology | 2015

Gamma-hydroxybutyrate enhances mood and prosocial behavior without affecting plasma oxytocin and testosterone

Oliver G. Bosch; Christoph Eisenegger; Jürg Gertsch; Robin von Rotz; Dario Dornbierer; M. Salomé Gachet; Markus Heinrichs; Thomas C. Wetter; Erich Seifritz; Boris B. Quednow

Gamma-hydroxybutyrate (GHB) is a GHB-/GABAB-receptor agonist. Reports from GHB abusers indicate euphoric, prosocial, and empathogenic effects of the drug. We measured the effects of GHB on mood, prosocial behavior, social and non-social cognition and assessed potential underlying neuroendocrine mechanisms. GHB (20mg/kg) was tested in 16 healthy males, using a randomized, placebo-controlled, cross-over design. Subjective effects on mood were assessed by visual-analogue-scales and the GHB-Specific-Questionnaire. Prosocial behavior was examined by the Charity Donation Task, the Social Value Orientation test, and the Reciprocity Task. Reaction time, memory, empathy, and theory-of-mind were also tested. Blood plasma levels of GHB, oxytocin, testosterone, progesterone, dehydroepiandrosterone (DHEA), cortisol, aldosterone, and adrenocorticotropic-hormone (ACTH) were determined. GHB showed stimulating and sedating effects, and elicited euphoria, disinhibition, and enhanced vitality. In participants with low prosociality, the drug increased donations and prosocial money distributions. In contrast, social cognitive abilities such as emotion recognition, empathy, and theory-of-mind, and basal cognitive functions were not affected. GHB increased plasma progesterone, while oxytocin and testosterone, cortisol, aldosterone, DHEA, and ACTH levels remained unaffected. GHB has mood-enhancing and prosocial effects without affecting social hormones such as oxytocin and testosterone. These data suggest a potential involvement of GHB-/GABAB-receptors and progesterone in mood and prosocial behavior.


Neuropsychopharmacology | 2017

Gamma-Hydroxybutyrate Increases Resting-State Limbic Perfusion and Body and Emotion Awareness in Humans

Oliver G. Bosch; Fabrizio Esposito; Michael M. Havranek; Dario Dornbierer; Robin von Rotz; Philipp Staempfli; Boris B. Quednow; Erich Seifritz

Gamma-hydroxybutyrate (GHB) is a GHB-/GABA-B receptor agonist inducing a broad spectrum of subjective effects including euphoria, disinhibition, and enhanced vitality. It is used as treatment for neuropsychiatric disorders including narcolepsy and alcohol withdrawal, but is also a drug of abuse. Non-medical users report enhancement of body and emotion awareness during intoxication. However, the neuronal underpinnings of such awareness alterations under GHB are unknown so far. The assessment of regional cerebral blood flow (rCBF) by pharmacological magnetic resonance imaging (phMRI) enables the elucidation of drug-induced functional brain alterations. Thus, we assessed the effects of GHB (35 mg/kg p.o.) in 17 healthy males on rCBF and subjective drug effects, using a placebo-controlled, double-blind, randomized, cross-over design employing arterial spin labeling phMRI. Compared to placebo, GHB increased subjective ratings for body and emotion awareness, and for dizziness (p<0.01–0.001, Bonferroni-corrected). A whole-brain analysis showed increased rCBF in the bilateral anterior cingulate cortex (ACC) and the right anterior insula under GHB (p<0.05, cluster-corrected). ACC and insula rCBF are correlated with relaxation, and body and emotion awareness (p<0.05–0.001, uncorrected). Interaction analyses revealed that GHB-induced increase of body awareness was accompanied by increased rCBF in ACC, whereas relaxation under GHB was accompanied by elevated rCBF in right anterior insula (p<0.05, uncorrected). In conclusion, enhancement of emotion and body awareness, and increased perfusion of insula and ACC bears implications both for the properties of GHB as a drug of abuse as well as for its putative personalized potential for specific therapeutic indications in affective disorders.


European Neuropsychopharmacology | 2017

Neural underpinnings of prosexual effects induced by gamma-hydroxybutyrate in healthy male humans

Oliver G. Bosch; Michael M. Havranek; Andrea Baumberger; Katrin H. Preller; Robin von Rotz; Marcus Herdener; Rainer Kraehenmann; Philipp Staempfli; M Scheidegger; Tim Klucken; Erich Seifritz; Boris B. Quednow

Gamma-hydroxybutyrate (GHB) is a GHB-/GABAB-receptor agonist currently used as treatment for narcolepsy but also as a drug of abuse. Non-medical GHB users have repeatedly reported prosexual effects including libido-enhancement and lowering of attractiveness standards for partner selection. Here, we examined the putative prosexual effects of oral GHB in healthy males in two experiments both employing randomized, placebo-controlled, double-blind, balanced, and cross-over study designs. In experiment I, subjective effects of 20 and 35mg/kg GHB vs. placebo were tested in 32 participants using the Sexual Arousal and Desire Inventory. In experiment II, brain reactivity towards erotic vs. neutral pictures was investigated in 15 participants using functional magnetic resonance imaging after 35mg/kg GHB vs. placebo. In experiment I, prosexual effects of GHB were shown by increased SADI ratings regarding physiological, evaluative, and motivational aspects of sexual arousal. In experiment II, erotic visual stimuli activated the bilateral insula, nucleus accumbens (NAcc), fusiform gyrus, thalamus, and left occipital pole under placebo. After GHB administration, even sexually neutral pictures of persons induced subjective sexual arousal and increased activation of the bilateral NAcc and right anterior cingulate cortex, which significantly correlated (left NAcc by trend). Moreover, a psychophysiological interaction analysis showed that GHB increased connectivity between NAcc and ventromedial prefrontal cortex during processing of visual erotic cues, i.e., in the condition in which subjective sexual arousal was highest. Our data show that GHB stimulates hedonic sexual functioning and lowers the threshold for erotic perception, which is related to increased susceptibility of mesolimbic reward pathways.


Brain Research Bulletin | 2016

The behavioural profile of gamma-hydroxybutyrate, gamma-butyrolactone and 1,4-butanediol in humans

Oliver G. Bosch; Erich Seifritz

Gamma-hydroxybutyrate (GHB) is a putative neurotransmitter, a drug of abuse, and a medical treatment for narcolepsy and other neuropsychiatric disorders. Its precursors gamma-butyrolactone (GBL) and 1,4-butanediol (1,4-BD) are endogenously converted to GHB and thereby exert their psychobehavioural effects. In humans, GHB has a wide spectrum of properties ranging from stimulation and euphoria in lower doses, to sedation, deep sleep, and coma after ingestion of high doses. However, behavioural studies in healthy volunteers remain scarce and are usually limited to psychomotor performance testing. Most available data arise from either qualitative studies with illicit users or clinical trials examining therapeutic properties of GHB (then usually termed sodium oxybate). Here, we present an overview of the behavioural effects of GHB, GBL, and 1,4-BD in these three populations. GHB and its precursors strongly influence behaviours related to core human autonomic functions such as control of food intake, sexual behaviour, and sleep-wake regulation. These effects are instrumentalised by illicit users and clinically utilised in neuropsychiatric disorders such as narcolepsy, fibromyalgia, and binge-eating syndrome. Considering the industry withdrawal from psychopharmacology development, repurposing of drugs according to their behavioural and clinical profiles has gained increasing relevance. As such, GHB seems to be an attractive candidate as an experimental therapeutic in depression.

Collaboration


Dive into the Oliver G. Bosch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge