Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oliver Mühlemann is active.

Publication


Featured researches published by Oliver Mühlemann.


Nature Structural & Molecular Biology | 2009

SMG6 promotes endonucleolytic cleavage of nonsense mRNA in human cells

Andrea Eberle; Søren Lykke-Andersen; Oliver Mühlemann; Torben Heick Jensen

From yeast to humans, mRNAs harboring premature termination codons (PTCs) are recognized and degraded by nonsense-mediated mRNA decay (NMD). However, degradation mechanisms of NMD have been suggested to differ between species. In Drosophila melanogaster, NMD is initiated by endonucleolysis near the PTC, whereas in yeast and human cells the current view posits that NMD occurs by exonucleolysis from one or both RNA termini. Here we report that degradation of human nonsense mRNAs can be initiated by PTC-proximal endonucleolytic cleavage. We identify the metazoan-specific NMD factor SMG6 as the responsible endonuclease by demonstrating that mutation of conserved residues in its nuclease domain—the C-terminal PIN motif—abolishes endonucleolysis in vivo and in vitro. Our data lead to a revised mechanistic model for degradation of nonsense mRNA in human cells and suggest that endonucleolytic cleavage is a conserved feature in metazoan NMD.


Cellular and Molecular Life Sciences | 2010

Nonsense-mediated mRNA decay in human cells: mechanistic insights, functions beyond quality control and the double-life of NMD factors

Pamela Nicholson; Hasmik Yepiskoposyan; Stefanie Metze; Rodolfo Zamudio Orozco; Nicole Kleinschmidt; Oliver Mühlemann

Nonsense-mediated decay is well known by the lucid definition of being a RNA surveillance mechanism that ensures the speedy degradation of mRNAs containing premature translation termination codons. However, as we review here, NMD is far from being a simple quality control mechanism; it also regulates the stability of many wild-type transcripts. We summarise the abundance of research that has characterised each of the NMD factors and present a unified model for the recognition of NMD substrates. The contentious issue of how and where NMD occurs is also discussed, particularly with regard to P-bodies and SMG6-driven endonucleolytic degradation. In recent years, the discovery of additional functions played by several of the NMD factors has further complicated the picture. Therefore, we also review the reported roles of UPF1, SMG1 and SMG6 in other cellular processes.


Biochimica et Biophysica Acta | 2013

Nonsense-mediated mRNA decay — Mechanisms of substrate mRNA recognition and degradation in mammalian cells

Christoph Schweingruber; Simone C. Rufener; David Zünd; Akio Yamashita; Oliver Mühlemann

The nonsense-mediated mRNA decay (NMD) pathway is well known as a translation-coupled quality control system that recognizes and degrades aberrant mRNAs with truncated open reading frames (ORF) due to the presence of a premature termination codon (PTC). However, a more general role of NMD in posttranscriptional regulation of gene expression is indicated by transcriptome-wide mRNA profilings that identified a plethora of physiological mRNAs as NMD targets. In this review, we focus on mechanistic aspects of target mRNA identification and degradation in mammalian cells, based on the available biochemical and genetic data, and point out knowledge gaps. Translation termination in a messenger ribonucleoprotein particle (mRNP) environment lacking necessary factors for proper translation termination emerges as a key determinant for subjecting an mRNA to NMD, and we therefore review recent structural and mechanistic insight into translation termination. In addition, the central role of UPF1, its crucial phosphorylation/dephosphorylation cycle and dynamic interactions with other NMD factors are discussed. Moreover, we address the role of exon junction complexes (EJCs) in NMD and summarize the functions of SMG5, SMG6 and SMG7 in promoting mRNA decay through different routes. This article is part of a Special Issue entitled: RNA Decay mechanisms.


PLOS Biology | 2008

Posttranscriptional Gene Regulation by Spatial Rearrangement of the 3′ Untranslated Region

Andrea Eberle; Lukas Stalder; Hansruedi Mathys; Rodolfo Zamudio Orozco; Oliver Mühlemann

Translation termination at premature termination codons (PTCs) triggers degradation of the aberrant mRNA, but the mechanism by which a termination event is defined as premature is still unclear. Here we show that the physical distance between the termination codon and the poly(A)-binding protein PABPC1 is a crucial determinant for PTC recognition in human cells. “Normal” termination codons can trigger nonsense-mediated mRNA decay (NMD) when this distance is extended; and vice versa, NMD can be suppressed by folding the poly(A) tail into proximity of a PTC or by tethering of PABPC1 nearby a PTC, indicating an evolutionarily conserved function of PABPC1 in promoting correct translation termination and antagonizing activation of NMD. Most importantly, our results demonstrate that spatial rearrangements of the 3′ untranslated region can modulate the NMD pathway and thereby provide a novel mechanism for posttranscriptional gene regulation.


Nature | 1998

Regulation of adenovirus alternative RNA splicing by dephosphorylation of SR proteins

Arvydas Kanopka; Oliver Mühlemann; Svend Petersen-Mahrt; Camilla Estmer; Christina Öhrmalm; Göran Akusjärvi

SR proteins are a family of essential splicing factors required for early recognition of splice sites during spliceosome assembly,. They also function as alternative RNA splicing factors when overexpressed in vivo or added in excess to extracts in vitro,. SR proteins are highly phosphorylated in vivo, a modification that is required for their function in spliceosome assembly, and splicing catalysis,. Here we show that SR proteins purified from late adenovirus-infected cells are inactivated as splicing enhancer or splicing repressor proteins by virus-induced dephosphorylation. We further show that the virus-encoded protein E4-ORF4 activates dephosphorylation by protein phosphatase 2A of HeLa SR proteins and converts their splicing properties into that of SR proteins purified from late adenovirus-infected cells. Taken together, our results suggest that E4-ORF4 is an important factor controlling the temporal shift in adenovirus alternative RNA splicing. We conclude that alternative pre-mRNA splicing, like many other biological processes, is regulated by reversible protein phosphorylation.


Nature Structural & Molecular Biology | 2006

EJC-independent degradation of nonsense immunoglobulin-μ mRNA depends on 3' UTR length

Marc Bühler; Silvia Steiner; Fabio Mohn; Alexandra Paillusson; Oliver Mühlemann

Inconsistent with prevailing models for nonsense-mediated mRNA decay (NMD) in mammals, the mRNA levels of immunoglobulin-μ (Ig-μ) genes with premature termination codons (PTCs) in the penultimate exon are still reduced by NMD when the intron furthest downstream is deleted. As in yeast, this exon junction complex-independent NMD of Ig-μ mRNAs depends on the distance between the termination codon and the poly(A) tail and suggests an evolutionarily conserved mode of PTC recognition.


Nucleic Acids Research | 2005

A GFP-based reporter system to monitor nonsense-mediated mRNA decay

Alexandra Paillusson; Nadine Hirschi; Claudio Vallan; Claus M. Azzalin; Oliver Mühlemann

Aberrant mRNAs whose open reading frame (ORF) is truncated by the presence of a premature translation-termination codon (PTC) are recognized and degraded in eukaryotic cells by a process called nonsense-mediated mRNA decay (NMD). Here, we report the development of a reporter system that allows monitoring of NMD in mammalian cells by measuring the fluorescence of green fluorescent protein (GFP). The NMD reporter gene consists of a T-cell receptor-β minigene construct, in which the GFP-ORF was inserted such that the stop codon of GFP is recognized as PTC. The reporter mRNA is therefore subjected to NMD, resulting in a low steady-state mRNA level, an accordingly low protein level and hence a very low green fluorescence in normal, NMD-competent cells that express this reporter gene. We show that the inactivation of NMD by RNAi-mediated knockdown of the essential NMD factor hUpf1 or hSmg6 increases the NMD reporter mRNA level, resulting in a proportional increase of the green fluorescence that can be detected by flow cytometry, spectrofluorometry and fluorescence microscopy. With these properties, our GFP-based NMD reporter system could be used for large-scale screenings to identify NMD-inhibiting drugs or NMD-deficient mutant cells.


Molecular Cell | 2001

Precursor RNAs Harboring Nonsense Codons Accumulate Near the Site of Transcription

Oliver Mühlemann; Caroline S. Mock-Casagrande; Jun Wang; Shulin Li; Noélia Custódio; Maria Carmo-Fonseca; Miles F. Wilkinson; Melissa J. Moore

Messenger RNAs containing premature termination codons (PTCs) are selectively eliminated by nonsense-mediated mRNA decay (NMD). Paradoxically, although cytoplasmic ribosomes are the only known species capable of PTC recognition, in mammals many PTC-containing mRNAs are apparently eliminated prior to release from the nucleus. To determine whether PTCs can influence events within the nucleus proper, we studied the immunoglobulin (Ig)-mu and T cell receptor (TCR)-beta genes using fluorescent in situ hybridization (FISH). Alleles containing PTCs, but not those containing a missense mutation or a frameshift followed by frame-correcting mutations, exhibited elevated levels of pre-mRNA, which accumulated at or near the site of transcription. Our data indicate that mRNA reading frame can influence events at or near the site of gene transcription.


Trends in Cell Biology | 2008

The meaning of nonsense

Lukas Stalder; Oliver Mühlemann

To ensure the accuracy of gene expression, eukaryotes have evolved several surveillance mechanisms. One of the best-studied quality control mechanisms is nonsense-mediated mRNA decay (NMD), which recognizes and degrades transcripts harboring a premature translation-termination codon (PTC), thereby preventing the production of faulty proteins. NMD regulates approximately 10% of human mRNAs, and its physiological importance is manifested by the fact that approximately 30% of disease-associated mutations generate PTCs. Although different mechanisms of PTC recognition have been proposed for different species, recent studies in Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabditis elegans, plants and mammals suggest a conserved model. Here, we summarize the latest results and discuss an emerging model for NMD and its implications for the regulation of gene expression.


Biochemical Society Transactions | 2010

Cutting the nonsense: the degradation of PTC-containing mRNAs

Pamela Nicholson; Oliver Mühlemann

In eukaryotes, mRNAs harbouring PTCs (premature translation-termination codons) are recognized and eliminated by NMD (nonsense-mediated mRNA decay). In addition to its quality-control function, NMD constitutes a translation-dependent post-transcriptional pathway to regulate the expression levels of physiological mRNAs. In contrast with PTC recognition, little is known about the mechanisms that trigger the rapid degradation of mammalian nonsense mRNA. Studies have shown that mammalian NMD targets can be degraded via both an SMG6 (where SMG is suppressor of morphological defects on genitalia)-dependent endonucleolytic pathway and a deadenylation and decapping-dependent exonucleolytic pathway, with the possible involvement of SMG5 and SMG7. In contrast, Drosophila melanogaster NMD is confined to the former and Saccharomyces cerevisiae NMD to the latter decay pathway. Consistent with this conclusion, mammals possess both SMG6 and SMG7, whereas D. melanogaster lacks an SMG7 homologue and yeast have no SMG6 equivalent. In the present paper, we review what is known about the degradation of PTC-containing mRNAs so far, paying particular attention to the properties of the NMD-specific factors SMG5-SMG7 and to what is known about the mechanism of degrading mRNAs after they have been committed to the NMD pathway.

Collaboration


Dive into the Oliver Mühlemann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge