Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oliver N. King is active.

Publication


Featured researches published by Oliver N. King.


EMBO Reports | 2011

The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases.

Rasheduzzaman Chowdhury; Kar Kheng Yeoh; Ya-Min Tian; Lars Hillringhaus; Eleanor A. L. Bagg; Nathan R. Rose; Ivanhoe K. H. Leung; Xuan S Li; Esther C. Y. Woon; Ming Yang; Michael A. McDonough; Oliver N. King; Ian J. Clifton; Robert J. Klose; Timothy D. W. Claridge; Peter J. Ratcliffe; Christopher J. Schofield; Akane Kawamura

Mutations in isocitrate dehydrogenases (IDHs) have a gain‐of‐function effect leading to R(−)‐2‐hydroxyglutarate (R‐2HG) accumulation. By using biochemical, structural and cellular assays, we show that either or both R‐ and S‐2HG inhibit 2‐oxoglutarate (2OG)‐dependent oxygenases with varying potencies. Half‐maximal inhibitory concentration (IC50) values for the R‐form of 2HG varied from approximately 25 μM for the histone Nε‐lysine demethylase JMJD2A to more than 5 mM for the hypoxia‐inducible factor (HIF) prolyl hydroxylase. The results indicate that candidate oncogenic pathways in IDH‐associated malignancy should include those that are regulated by other 2OG oxygenases than HIF hydroxylases, in particular those involving the regulation of histone methylation.


Cell | 2009

Large-Scale Structural Analysis of the Classical Human Protein Tyrosine Phosphatome.

Alastair J. Barr; E. Ugochukwu; Wen Hwa Lee; Oliver N. King; Panagis Filippakopoulos; Ivan Alfano; P. Savitsky; N. Burgess-Brown; Susanne Müller; Stefan Knapp

Summary Protein tyrosine phosphatases (PTPs) play a critical role in regulating cellular functions by selectively dephosphorylating their substrates. Here we present 22 human PTP crystal structures that, together with prior structural knowledge, enable a comprehensive analysis of the classical PTP family. Despite their largely conserved fold, surface properties of PTPs are strikingly diverse. A potential secondary substrate-binding pocket is frequently found in phosphatases, and this has implications for both substrate recognition and development of selective inhibitors. Structural comparison identified four diverse catalytic loop (WPD) conformations and suggested a mechanism for loop closure. Enzymatic assays revealed vast differences in PTP catalytic activity and identified PTPD1, PTPD2, and HDPTP as catalytically inert protein phosphatases. We propose a “head-to-toe” dimerization model for RPTPγ/ζ that is distinct from the “inhibitory wedge” model and that provides a molecular basis for inhibitory regulation. This phosphatome resource gives an expanded insight into intrafamily PTP diversity, catalytic activity, substrate recognition, and autoregulatory self-association.


PLOS ONE | 2010

Quantitative high-throughput screening identifies 8-hydroxyquinolines as cell-active histone demethylase inhibitors.

Oliver N. King; Xuan Shirley Li; Masaaki Sakurai; Akane Kawamura; Nathan R. Rose; Stanley S. Ng; Amy Quinn; Ganesha Rai; Bryan T. Mott; Paul Beswick; Robert J. Klose; U. Oppermann; Ajit Jadhav; Tom D. Heightman; David J. Maloney; Christopher J. Schofield; Anton Simeonov

BACKGROUND Small molecule modulators of epigenetic processes are currently sought as basic probes for biochemical mechanisms, and as starting points for development of therapeutic agents. N(ε)-Methylation of lysine residues on histone tails is one of a number of post-translational modifications that together enable transcriptional regulation. Histone lysine demethylases antagonize the action of histone methyltransferases in a site- and methylation state-specific manner. N(ε)-Methyllysine demethylases that use 2-oxoglutarate as co-factor are associated with diverse human diseases, including cancer, inflammation and X-linked mental retardation; they are proposed as targets for the therapeutic modulation of transcription. There are few reports on the identification of templates that are amenable to development as potent inhibitors in vivo and large diverse collections have yet to be exploited for the discovery of demethylase inhibitors. PRINCIPAL FINDINGS High-throughput screening of a ∼236,000-member collection of diverse molecules arrayed as dilution series was used to identify inhibitors of the JMJD2 (KDM4) family of 2-oxoglutarate-dependent histone demethylases. Initial screening hits were prioritized by a combination of cheminformatics, counterscreening using a coupled assay enzyme, and orthogonal confirmatory detection of inhibition by mass spectrometric assays. Follow-up studies were carried out on one of the series identified, 8-hydroxyquinolines, which were shown by crystallographic analyses to inhibit by binding to the active site Fe(II) and to modulate demethylation at the H3K9 locus in a cell-based assay. CONCLUSIONS These studies demonstrate that diverse compound screening can yield novel inhibitors of 2OG dependent histone demethylases and provide starting points for the development of potent and selective agents to interrogate epigenetic regulation.


Chemistry & Biology | 2011

Specific CLK Inhibitors from a Novel Chemotype for Regulation of Alternative Splicing

Oleg Fedorov; Kilian Huber; Andreas Eisenreich; Panagis Filippakopoulos; Oliver N. King; Alex N. Bullock; Damian Szklarczyk; Lars Juhl Jensen; Doriano Fabbro; Jörg Trappe; Ursula Rauch; Franz Bracher; Stefan Knapp

Summary There is a growing recognition of the importance of protein kinases in the control of alternative splicing. To define the underlying regulatory mechanisms, highly selective inhibitors are needed. Here, we report the discovery and characterization of the dichloroindolyl enaminonitrile KH-CB19, a potent and highly specific inhibitor of the CDC2-like kinase isoforms 1 and 4 (CLK1/CLK4). Cocrystal structures of KH-CB19 with CLK1 and CLK3 revealed a non-ATP mimetic binding mode, conformational changes in helix αC and the phosphate binding loop and halogen bonding to the kinase hinge region. KH-CB19 effectively suppressed phosphorylation of SR (serine/arginine) proteins in cells, consistent with its expected mechanism of action. Chemical inhibition of CLK1/CLK4 generated a unique pattern of splicing factor dephosphorylation and had at low nM concentration a profound effect on splicing of the two tissue factor isoforms flTF (full-length TF) and asHTF (alternatively spliced human TF).


Journal of Medicinal Chemistry | 2010

Selective Inhibitors of the JMJD2 Histone Demethylases: Combined Nondenaturing Mass Spectrometric Screening and Crystallographic Approaches

Nathan R. Rose; Esther C. Y. Woon; Guy L. Kingham; Oliver N. King; Jasmin Mecinović; Ian J. Clifton; Stanley S. Ng; Jobina Talib-Hardy; U. Oppermann; Michael A. McDonough; Christopher J. Schofield

Ferrous ion and 2-oxoglutarate (2OG) oxygenases catalyze the demethylation of Nε-methylated lysine residues in histones. Here we report studies on the inhibition of the JMJD2 subfamily of histone demethylases, employing binding analyses by nondenaturing mass spectrometry (MS), dynamic combinatorial chemistry coupled to MS, turnover assays, and crystallography. The results of initial binding and inhibition assays directed the production and analysis of a set of N-oxalyl-d-tyrosine derivatives to explore the extent of a subpocket at the JMJD2 active site. Some of the inhibitors were shown to be selective for JMJD2 over the hypoxia-inducible factor prolyl hydroxylase PHD2. A crystal structure of JMJD2A in complex with one of the potent inhibitors was obtained; modeling other inhibitors based on this structure predicts interactions that enable improved inhibition for some compounds.


Journal of Medicinal Chemistry | 2012

Plant Growth Regulator Daminozide Is a Selective Inhibitor of Human KDM2/7 Histone Demethylases

Nathan R. Rose; Esther C. Y. Woon; Anthony Tumber; Louise J. Walport; Rasheduzzaman Chowdhury; Xuan Shirley Li; Oliver N. King; Clarisse Lejeune; Stanley S. Ng; T. Krojer; Mun Chiang Chan; Anna M. Rydzik; Richard J. Hopkinson; Ka Hing Che; Michelle Daniel; C. Strain-Damerell; C. Gileadi; Grazyna Kochan; Ivanhoe K. H. Leung; J E Dunford; Kar Kheng Yeoh; Peter J. Ratcliffe; N. Burgess-Brown; Frank von Delft; Susanne Müller; Brian D. Marsden; Paul E. Brennan; Michael A. McDonough; U. Oppermann; Robert J. Klose

The JmjC oxygenases catalyze the N-demethylation of N(ε)-methyl lysine residues in histones and are current therapeutic targets. A set of human 2-oxoglutarate analogues were screened using a unified assay platform for JmjC demethylases and related oxygenases. Results led to the finding that daminozide (N-(dimethylamino)succinamic acid, 160 Da), a plant growth regulator, selectively inhibits the KDM2/7 JmjC subfamily. Kinetic and crystallographic studies reveal that daminozide chelates the active site metal via its hydrazide carbonyl and dimethylamino groups.


Chemical Science | 2013

5-Carboxy-8-hydroxyquinoline is a Broad Spectrum 2-Oxoglutarate Oxygenase Inhibitor which Causes Iron Translocation.

Richard J. Hopkinson; Anthony Tumber; Clarence Yapp; Rasheduzzaman Chowdhury; WeiShen Aik; Ka Hing Che; Xuan Shirley Li; Jan Kristensen; Oliver N. King; Mun Chiang Chan; Kar Kheng Yeoh; Hwanho Choi; Louise J. Walport; Cyrille C. Thinnes; Jacob T. Bush; Clarisse Lejeune; Anna M. Rydzik; Nathan R. Rose; Eleanor A. L. Bagg; Michael A. McDonough; T. Krojer; W.W. Yue; Stanley S. Ng; Lars Olsen; Paul E. Brennan; U. Oppermann; Susanne Müller-Knapp; Robert J. Klose; Peter J. Ratcliffe; Christopher J. Schofield

2-Oxoglutarate and iron dependent oxygenases are therapeutic targets for human diseases. Using a representative 2OG oxygenase panel, we compare the inhibitory activities of 5-carboxy-8-hydroxyquinoline (IOX1) and 4-carboxy-8-hydroxyquinoline (4C8HQ) with that of two other commonly used 2OG oxygenase inhibitors, N-oxalylglycine (NOG) and 2,4-pyridinedicarboxylic acid (2,4-PDCA). The results reveal that IOX1 has a broad spectrum of activity, as demonstrated by the inhibition of transcription factor hydroxylases, representatives of all 2OG dependent histone demethylase subfamilies, nucleic acid demethylases and γ-butyrobetaine hydroxylase. Cellular assays show that, unlike NOG and 2,4-PDCA, IOX1 is active against both cytosolic and nuclear 2OG oxygenases without ester derivatisation. Unexpectedly, crystallographic studies on these oxygenases demonstrate that IOX1, but not 4C8HQ, can cause translocation of the active site metal, revealing a rare example of protein ligand-induced metal movement.


ChemMedChem | 2011

Inhibition of histone demethylases by 4-carboxy-2,2'-bipyridyl compounds

Kai-Hsuan Chang; Oliver N. King; Anthony Tumber; Esther C. Y. Woon; Tom D. Heightman; Michael A. McDonough; Christopher J. Schofield; Nathan R. Rose

In eukaryotes, nuclear DNA is packaged into chromatin by binding to histones and associated factors. Covalent modifications to histone tails are associated with specific transcriptional states of the associated DNA. Acetylation of lysine side chains normally correlates with transcriptional activation, while deacetylation leads to transcriptional silencing. The regulatory roles of lysine and arginine methylation appear to be more complex. Methylation of certain lysine residues is associated with active transcription, while methylation of others is associated with silencing and heterochromatin formation. Each methylation marker is placed, removed and interpreted in a site-specific manner by histone methyltransferases, demethylases and methyl binding domains, respectively. The biological functions of the individual enzymes are largely undefined and are the focus of current investigations (for Reviews see References [1, 2]) The JmjC histone demethylases are 2-oxoglutarate (2OG)-dependent oxygenases that catalyse N-lysyl demethylation via hydroxylation of the methyl group in a 2OGand Fe-dependent manner (Scheme 1). Human 2OG oxygenases catalyse a range of reactions, including hydroxylation of amino acids, DNA, and small molecules, and demethylation of proteins and DNA. 2OG oxygenases show promise as therapeutic targets; an inhibitor of g-butyrobetaine hydroxylase (BBOX) is used for the treatment of cardiovascular disease, and inhibitors of the hypoxia inducible factor (HIF) prolyl hydroxylases are in clinical trials for the treatment of anaemia. Inhibitors of the collagen prolyl hydroxylases have also been evaluated as potential therapeutics for the treatment of liver fibrosis. 8] The discovery of the JmjC domain histone demethylases, and the suggestion that some of them are potential therapeutic targets for cancer treatment, has stimulated interest in their inhibition, but relatively few studies have been described. Reported inhibitors of the JmjC demethylases include N-oxalyl amino acids, 8-hydroxyquinolines, pyridine dicarboxylates, hydroxamic acids and catechol-type flavonoids (Figure 1). Compounds that catalyse the ejection of a structural Zn ion from the JMJD2 demethylases have also been reported (Figure 1).


Analytical Biochemistry | 2010

Development of homogeneous luminescence assays for histone demethylase catalysis and binding.

Akane Kawamura; Anthony Tumber; Nathan R. Rose; Oliver N. King; Michelle Daniel; U. Oppermann; Tom D. Heightman; Christopher J. Schofield

Covalent modifications to histones play important roles in chromatin dynamics and the regulation of gene expression. The JumonjiC (JmjC)-containing histone demethylases (HDMs) catalyze the demethylation of methylated lysine residues on histone tails. Here we report the development of homogeneous luminescence-based assay methods for measuring the catalytic activity and the binding affinities of peptides to HDMs. The assays use amplified luminescent proximity homogeneous assay (ALPHA) technology, are sensitive and robust, and can be used for small molecule inhibitor screening of HDMs. We have profiled known inhibitors of JMJD2E and demonstrate a correlation between the inhibitor potencies determined by the ALPHA and other types of assays. Although this study focuses on the JMJD2E isoform, the catalytic turnover and binding assays described here can be used in studies on other HDMs. The assays should be useful for the development of small molecule inhibitors selective for HDM isoforms.


Nucleic Acids Research | 2011

A prominent β-hairpin structure in the winged-helix domain of RECQ1 is required for DNA unwinding and oligomer formation

Bojana Lucic; Y. Zhang; Oliver N. King; Ramiro Mendoza-Maldonado; Matteo Berti; Frank H. Niesen; N. Burgess-Brown; A.C.W. Pike; Christopher D. O. Cooper; O. Gileadi; Alessandro Vindigni

RecQ helicases have attracted considerable interest in recent years due to their role in the suppression of genome instability and human diseases. These atypical helicases exert their function by resolving a number of highly specific DNA structures. The crystal structure of a truncated catalytic core of the human RECQ1 helicase (RECQ149–616) shows a prominent β-hairpin, with an aromatic residue (Y564) at the tip, located in the C-terminal winged-helix domain. Here, we show that the β-hairpin is required for the DNA unwinding and Holliday junction (HJ) resolution activity of full-length RECQ1, confirming that it represents an important determinant for the distinct substrate specificity of the five human RecQ helicases. In addition, we found that the β-hairpin is required for dimer formation in RECQ149–616 and tetramer formation in full-length RECQ1. We confirmed the presence of stable RECQ149–616 dimers in solution and demonstrated that dimer formation favours DNA unwinding; even though RECQ1 monomers are still active. Tetramers are instead necessary for more specialized activities such as HJ resolution and strand annealing. Interestingly, two independent protein–protein contacts are required for tetramer formation, one involves the β-hairpin and the other the N-terminus of RECQ1, suggesting a non-hierarchical mechanism of tetramer assembly.

Collaboration


Dive into the Oliver N. King's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akane Kawamura

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar

Ajit Jadhav

University of California

View shared research outputs
Top Co-Authors

Avatar

Amy Quinn

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Anton Simeonov

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Bryan T. Mott

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ganesha Rai

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jesse H. Arbuckle

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge