Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oliver Rinner is active.

Publication


Featured researches published by Oliver Rinner.


Molecular Systems Biology | 2014

The quantitative proteome of a human cell line

Martin Beck; Alexander Schmidt; Johan Malmstroem; Manfred Claassen; Alessandro Ori; Anna Szymborska; Franz Herzog; Oliver Rinner; Jan Ellenberg; Ruedi Aebersold

The generation of mathematical models of biological processes, the simulation of these processes under different conditions, and the comparison and integration of multiple data sets are explicit goals of systems biology that require the knowledge of the absolute quantity of the systems components. To date, systematic estimates of cellular protein concentrations have been exceptionally scarce. Here, we provide a quantitative description of the proteome of a commonly used human cell line in two functional states, interphase and mitosis. We show that these human cultured cells express at least ∼10 000 proteins and that the quantified proteins span a concentration range of seven orders of magnitude up to 20 000 000 copies per cell. We discuss how protein abundance is linked to function and evolution.


Nature Methods | 2010

High-throughput generation of selected reaction-monitoring assays for proteins and proteomes

Paola Picotti; Oliver Rinner; Robert Stallmach; Franziska Dautel; Terry Farrah; Bruno Domon; Holger Wenschuh; Ruedi Aebersold

Selected reaction monitoring (SRM) uses sensitive and specific mass spectrometric assays to measure target analytes across multiple samples, but it has not been broadly applied in proteomics owing to the tedious assay development process for each protein. We describe a method based on crude synthetic peptide libraries for the high-throughput development of SRM assays. We illustrate the power of the approach by generating and applying validated SRM assays for all Saccharomyces cerevisiae kinases and phosphatases.


Molecular & Cellular Proteomics | 2010

Probing Native Protein Structures by Chemical Cross-linking, Mass Spectrometry, and Bioinformatics

Alexander Leitner; Thomas Walzthoeni; Abdullah Kahraman; Franz Herzog; Oliver Rinner; Martin Beck; Ruedi Aebersold

Chemical cross-linking of reactive groups in native proteins and protein complexes in combination with the identification of cross-linked sites by mass spectrometry has been in use for more than a decade. Recent advances in instrumentation, cross-linking protocols, and analysis software have led to a renewed interest in this technique, which promises to provide important information about native protein structure and the topology of protein complexes. In this article, we discuss the critical steps of chemical cross-linking and its implications for (structural) biology: reagent design and cross-linking protocols, separation and mass spectrometric analysis of cross-linked samples, dedicated software for data analysis, and the use of cross-linking data for computational modeling. Finally, the impact of protein cross-linking on various biological disciplines is highlighted.


Nature Methods | 2008

Identification of cross-linked peptides from large sequence databases

Oliver Rinner; Jan Seebacher; Thomas Walzthoeni; Lukas N. Mueller; Martin Beck; Alexander Schmidt; Markus Mueller; Ruedi Aebersold

NOTE: In the version of this Brief Communication initially published, an author name (Lukas Mueller) was incorrect. The correct author name is Lukas N Mueller. The error has been corrected in the HTML and PDF versions of the article.We describe a method to identify cross-linked peptides from complex samples and large protein sequence databases by combining isotopically tagged cross-linkers, chromatographic enrichment, targeted proteomics and a new search engine called xQuest. This software reduces the search space by an upstream candidate-peptide search before the recombination step. We showed that xQuest can identify cross-linked peptides from a total Escherichia coli lysate with an unrestricted database search.


Nature Methods | 2011

mProphet: automated data processing and statistical validation for large-scale SRM experiments

Lukas Reiter; Oliver Rinner; Paola Picotti; Ruth Hüttenhain; Martin Beck; Mi-Youn Brusniak; Michael O. Hengartner; Ruedi Aebersold

Selected reaction monitoring (SRM) is a targeted mass spectrometric method that is increasingly used in proteomics for the detection and quantification of sets of preselected proteins at high sensitivity, reproducibility and accuracy. Currently, data from SRM measurements are mostly evaluated subjectively by manual inspection on the basis of ad hoc criteria, precluding the consistent analysis of different data sets and an objective assessment of their error rates. Here we present mProphet, a fully automated system that computes accurate error rates for the identification of targeted peptides in SRM data sets and maximizes specificity and sensitivity by combining relevant features in the data into a statistical model.


Nature Biotechnology | 2007

A high-quality catalog of the Drosophila melanogaster proteome.

Erich Brunner; Christian H. Ahrens; Sonali Mohanty; Hansruedi Baetschmann; Sandra N. Loevenich; Frank Potthast; Eric W. Deutsch; Christian Panse; Ulrik de Lichtenberg; Oliver Rinner; Hookeun Lee; Patrick G A Pedrioli; Johan Malmström; Katja Koehler; Sabine P. Schrimpf; Jeroen Krijgsveld; Floyd Kregenow; Albert J. R. Heck; Ernst Hafen; Ralph Schlapbach; Ruedi Aebersold

Understanding how proteins and their complex interaction networks convert the genomic information into a dynamic living organism is a fundamental challenge in biological sciences. As an important step towards understanding the systems biology of a complex eukaryote, we cataloged 63% of the predicted Drosophila melanogaster proteome by detecting 9,124 proteins from 498,000 redundant and 72,281 distinct peptide identifications. This unprecedented high proteome coverage for a complex eukaryote was achieved by combining sample diversity, multidimensional biochemical fractionation and analysis-driven experimentation feedback loops, whereby data collection is guided by statistical analysis of prior data. We show that high-quality proteomics data provide crucial information to amend genome annotation and to confirm many predicted gene models. We also present experimentally identified proteotypic peptides matching ∼50% of D. melanogaster gene models. This library of proteotypic peptides should enable fast, targeted and quantitative proteomic studies to elucidate the systems biology of this model organism.


Proteomics | 2012

Using iRT, a normalized retention time for more targeted measurement of peptides.

Claudia Escher; Lukas Reiter; Brendan MacLean; Reto Ossola; Franz Herzog; John Chilton; Michael J. MacCoss; Oliver Rinner

Multiple reaction monitoring (MRM) has recently become the method of choice for targeted quantitative measurement of proteins using mass spectrometry. The method, however, is limited in the number of peptides that can be measured in one run. This number can be markedly increased by scheduling the acquisition if the accurate retention time (RT) of each peptide is known. Here we present iRT, an empirically derived dimensionless peptide‐specific value that allows for highly accurate RT prediction. The iRT of a peptide is a fixed number relative to a standard set of reference iRT‐peptides that can be transferred across laboratories and chromatographic systems. We show that iRT facilitates the setup of multiplexed experiments with acquisition windows more than four times smaller compared to in silico RT predictions resulting in improved quantification accuracy. iRTs can be determined by any laboratory and shared transparently. The iRT concept has been implemented in Skyline, the most widely used software for MRM experiments.


Nature | 2013

A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis

Paola Picotti; Mathieu Clément-Ziza; Hugo Y. K. Lam; David S. Campbell; Alexander Schmidt; Eric W. Deutsch; Hannes L. Röst; Zhongwei Sun; Oliver Rinner; Lukas Reiter; Qin Shen; Jacob J. Michaelson; Andreas Frei; Simon Alberti; Ulrike Kusebauch; Bernd Wollscheid; Robert L. Moritz; Andreas Beyer; Ruedi Aebersold

Experience from different fields of life sciences suggests that accessible, complete reference maps of the components of the system under study are highly beneficial research tools. Examples of such maps include libraries of the spectroscopic properties of molecules, or databases of drug structures in analytical or forensic chemistry. Such maps, and methods to navigate them, constitute reliable assays to probe any sample for the presence and amount of molecules contained in the map. So far, attempts to generate such maps for any proteome have failed to reach complete proteome coverage. Here we use a strategy based on high-throughput peptide synthesis and mass spectrometry to generate an almost complete reference map (97% of the genome-predicted proteins) of the Saccharomyces cerevisiae proteome. We generated two versions of this mass-spectrometric map, one supporting discovery-driven (shotgun) and the other supporting hypothesis-driven (targeted) proteomic measurements. Together, the two versions of the map constitute a complete set of proteomic assays to support most studies performed with contemporary proteomic technologies. To show the utility of the maps, we applied them to a protein quantitative trait locus (QTL) analysis, which requires precise measurement of the same set of peptides over a large number of samples. Protein measurements over 78 S. cerevisiae strains revealed a complex relationship between independent genetic loci, influencing the levels of related proteins. Our results suggest that selective pressure favours the acquisition of sets of polymorphisms that adapt protein levels but also maintain the stoichiometry of functionally related pathway members.


Science Translational Medicine | 2012

Reproducible quantification of cancer-associated proteins in body fluids using targeted proteomics

Ruth Hüttenhain; Martin Soste; Nathalie Selevsek; Hannes L. Röst; Atul Sethi; Christine Carapito; Terry Farrah; Eric W. Deutsch; Ulrike Kusebauch; Robert L. Moritz; Emma Niméus-Malmström; Oliver Rinner; Ruedi Aebersold

A compendium of SRM assays for cancer-associated proteins provides a resource for accelerating and planning biomarker verification studies. Dealing with Data Overload With the exponential blossoming of information sources—from 24-hour news to blogs to Twitter feeds—it can be difficult to differentiate fact from fiction. Translational medicine is experiencing a parallel mushrooming of data in research on disease biomarkers. Whereas marker validation once occurred on a case by case basis, the literature now bulges with potential biomarkers at diverse stages of validation, and researchers and clinicians are hard-pressed to make sense of it all. Now, Hüttenhain et al. provide a modern validation method that can keep up with the current pace of biomarker-candidate generation. The authors report on a high-throughput method for developing selected reaction-monitoring (SRM) assays (targeted mass spectrometry) for human proteins. SRM assays can be run in parallel and have low limits of detection and high accuracy. They then used these assays—for more than 1000 cancer-associated proteins—to determine the detectability of the target proteins in plasma and urine from cancer patients and healthy controls. They detected 182 proteins in plasma and 408 in urine, and reproducibly quantified 34 biomarker candidates across 83 patient plasma samples. These SRM assays can be broadly applied for cancer-associated biomarker validation and should help provide a filter to stem information overload. The rigorous testing of hypotheses on suitable sample cohorts is a major limitation in translational research. This is particularly the case for the validation of protein biomarkers; the lack of accurate, reproducible, and sensitive assays for most proteins has precluded the systematic assessment of hundreds of potential marker proteins described in the literature. Here, we describe a high-throughput method for the development and refinement of selected reaction monitoring (SRM) assays for human proteins. The method was applied to generate such assays for more than 1000 cancer-associated proteins, which are functionally related to candidate cancer driver mutations. We used the assays to determine the detectability of the target proteins in two clinically relevant samples: plasma and urine. One hundred eighty-two proteins were detected in depleted plasma, spanning five orders of magnitude in abundance and reaching below a concentration of 10 ng/ml. The narrower concentration range of proteins in urine allowed the detection of 408 proteins. Moreover, we demonstrate that these SRM assays allow reproducible quantification by monitoring 34 biomarker candidates across 83 patient plasma samples. Through public access to the entire assay library, researchers will be able to target their cancer-associated proteins of interest in any sample type using the detectability information in plasma and urine as a guide. The generated expandable reference map of SRM assays for cancer-associated proteins will be a valuable resource for accelerating and planning biomarker verification studies.


Molecular Systems Biology | 2007

PhosphoPep--a phosphoproteome resource for systems biology research in Drosophila Kc167 cells.

Bernd Bodenmiller; Johan Malmström; Bertran Gerrits; David Campbell; Henry H N Lam; Alexander Schmidt; Oliver Rinner; Lukas N. Mueller; Paul Shannon; Patrick G A Pedrioli; Christian Panse; Hoo Keun Lee; Ralph Schlapbach; Ruedi Aebersold

The ability to analyze and understand the mechanisms by which cells process information is a key question of systems biology research. Such mechanisms critically depend on reversible phosphorylation of cellular proteins, a process that is catalyzed by protein kinases and phosphatases. Here, we present PhosphoPep, a database containing more than 10 000 unique high‐confidence phosphorylation sites mapping to nearly 3500 gene models and 4600 distinct phosphoproteins of the Drosophila melanogaster Kc167 cell line. This constitutes the most comprehensive phosphorylation map of any single source to date. To enhance the utility of PhosphoPep, we also provide an array of software tools that allow users to browse through phosphorylation sites on single proteins or pathways, to easily integrate the data with other, external data types such as protein–protein interactions and to search the database via spectral matching. Finally, all data can be readily exported, for example, for targeted proteomics approaches and the data thus generated can be again validated using PhosphoPep, supporting iterative cycles of experimentation and analysis that are typical for systems biology research.

Collaboration


Dive into the Oliver Rinner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Beck

European Bioinformatics Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge