Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oliver Ritter is active.

Publication


Featured researches published by Oliver Ritter.


Nature | 2011

Correlation between deep fluids, tremor and creep along the central San Andreas fault

Michael Becken; Oliver Ritter; Paul A. Bedrosian; U. Weckmann

The seismicity pattern along the San Andreas fault near Parkfield and Cholame, California, varies distinctly over a length of only fifty kilometres. Within the brittle crust, the presence of frictionally weak minerals, fault-weakening high fluid pressures and chemical weakening are considered possible causes of an anomalously weak fault northwest of Parkfield. Non-volcanic tremor from lower-crustal and upper-mantle depths is most pronounced about thirty kilometres southeast of Parkfield and is thought to be associated with high pore-fluid pressures at depth. Here we present geophysical evidence of fluids migrating into the creeping section of the San Andreas fault that seem to originate in the region of the uppermost mantle that also stimulates tremor, and evidence that along-strike variations in tremor activity and amplitude are related to strength variations in the lower crust and upper mantle. Interconnected fluids can explain a deep zone of anomalously low electrical resistivity that has been imaged by magnetotelluric data southwest of the Parkfield–Cholame segment. Near Cholame, where fluids seem to be trapped below a high-resistivity cap, tremor concentrates adjacent to the inferred fluids within a mechanically strong zone of high resistivity. By contrast, subvertical zones of low resistivity breach the entire crust near the drill hole of the San Andreas Fault Observatory at Depth, northwest of Parkfield, and imply pathways for deep fluids into the eastern fault block, coincident with a mechanically weak crust and the lower tremor amplitudes in the lower crust. Fluid influx to the fault system is consistent with hypotheses of fault-weakening high fluid pressures in the brittle crust.


Reviews of Geophysics | 2009

Anatomy of the Dead Sea Transform from lithospheric to microscopic scale

Michael Weber; K. Abu-Ayyash; A. Abueladas; Amotz Agnon; Z. Alasonati‐Tašárová; H. Al‐Zubi; A. Babeyko; Yuval Bartov; K. Bauer; Michael Becken; Paul A. Bedrosian; Zvi Ben-Avraham; Günter Bock; M. Bohnhoff; J. Bribach; P. Dulski; Jörg Ebbing; Radwan J. El-Kelani; A. Förster; H.-J. Förster; U. Frieslander; Zvi Garfunkel; H. J. Goetze; V. Haak; Christian Haberland; M. Hassouneh; Stefan L. Helwig; A. Hofstetter; A. Hoffmann‐Rothe; K.-H. Jäckel

Fault zones are the locations where motion of tectonic plates, often associated with earthquakes, is accommodated. Despite a rapid increase in the understanding of faults in the last decades, our knowledge of their geometry, petrophysical properties, and controlling processes remains incomplete. The central questions addressed here in our study of the Dead Sea Transform (DST) in the Middle East are as follows: (1) What are the structure and kinematics of a large fault zone? (2) What controls its structure and kinematics? (3) How does the DST compare to other plate boundary fault zones? The DST has accommodated a total of 105 km of left-lateral transform motion between the African and Arabian plates since early Miocene (similar to 20 Ma). The DST segment between the Dead Sea and the Red Sea, called the Arava/Araba Fault (AF), is studied here using a multidisciplinary and multiscale approach from the mu m to the plate tectonic scale. We observe that under the DST a narrow, subvertical zone cuts through crust and lithosphere. First, from west to east the crustal thickness increases smoothly from 26 to 39 km, and a subhorizontal lower crustal reflector is detected east of the AF. Second, several faults exist in the upper crust in a 40 km wide zone centered on the AF, but none have kilometer-size zones of decreased seismic velocities or zones of high electrical conductivities in the upper crust expected for large damage zones. Third, the AF is the main branch of the DST system, even though it has accommodated only a part (up to 60 km) of the overall 105 km of sinistral plate motion. Fourth, the AF acts as a barrier to fluids to a depth of 4 km, and the lithology changes abruptly across it. Fifth, in the top few hundred meters of the AF a locally transpressional regime is observed in a 100-300 m wide zone of deformed and displaced material, bordered by subparallel faults forming a positive flower structure. Other segments of the AF have a transtensional character with small pull-aparts along them. The damage zones of the individual faults are only 5-20 m wide at this depth range. Sixth, two areas on the AF show mesoscale to microscale faulting and veining in limestone sequences with faulting depths between 2 and 5 km. Seventh, fluids in the AF are carried downward into the fault zone. Only a minor fraction of fluids is derived from ascending hydrothermal fluids. However, we found that on the kilometer scale the AF does not act as an important fluid conduit. Most of these findings are corroborated using thermomechanical modeling where shear deformation in the upper crust is localized in one or two major faults; at larger depth, shear deformation occurs in a 20-40 km wide zone with a mechanically weak decoupling zone extending subvertically through the entire lithosphere.


Geological Society, London, Special Publications | 2005

Electrical conductivity images of active and fossil fault zones

Oliver Ritter; Arne Hoffmann-Rothe; Paul A. Bedrosian; U. Weckmann; V. Haak

Abstract We compare recent magnetotelluric investigations of four large fault systems: (i) the actively deforming, ocean-continent interplate San Andreas Fault (SAF); (ii) the actively deforming, continent-continent interplate Dead Sea Transform (DST); (iii) the currently inactive, trench-linked intraplate West Fault (WF) in northern Chile; and (iv) the Waterberg Fault/Omaruru Lineament (WF/OL) in Namibia, a fossilized intraplate shear zone formed during early Proterozoic continental collision. These fault zones show both similarities and marked differences in their electrical subsurface structure. The central segment of the SAF is characterized by a zone of high conductivity extending to a depth of several kilometres and attributed to fluids within a highly fractured damage zone. The WF exhibits a less pronounced but similar fault-zone conductor (FZC) that can be explained by meteoric waters entering the fault zone. The DST appears different as it shows a distinct lack of a FZC and seems to act primarily as an impermeable barrier to cross-fault fluid transport. Differences in the electrical structure of these faults within the upper crust may be linked to the degree of deformation localization within the fault zone. At the DST, with no observable fault-zone conductor, strain may have been localized for a considerable time span along a narrow, metre-scale damage zone with a sustained strength difference between the shear plane and the surrounding host rock. In the case of the SAF, a positive correlation of conductance and fault activity is observed, with more active fault segments associated with wider, deeper and more conductive fault-zone anomalies. Fault-zone conductors, however, do not uniquely identify specific architectural or hydrological units of a fault. A more comprehensive whole-fault picture for the brittle crust can be developed in combination with seismicity and structural information. Giving a window into lower-crustal shear zones, the fossil WF/OL in Namibia is imaged as a subvertical, 14 km-deep, 10 km-wide zone of high and anisotropic conductivity. The present level of exhumation suggests that the WF/OL penetrated the entire crust as a relatively narrow shear zone. Contrary to the fluid-driven conductivity anomalies of active faults, the anomaly here is attributed to graphitic enrichment along former shear planes. Once created, graphite is stable over very long time spans and thus fault/shear zones may remain conductive long after activity ceases.


Surveys in Geophysics | 2012

Magnetotelluric Studies at the San Andreas Fault Zone: Implications for the Role of Fluids

Michael Becken; Oliver Ritter

Fluids residing in interconnected porosity networks have a significant weakening effect on the rheology of rocks and can strongly influence deformation along fault zones. The magnetotelluric (MT) technique is sensitive to interconnected fluid networks and can image these zones on crustal and upper mantle scales. MT images have revealed several prominent electrical conductivity anomalies at the San Andreas Fault which have been attributed to the presence of saline fluids within such networks and which have been associated with tectonic processes. These models suggest that ongoing fluid release in the upper mantle and lower crust is closely related to the mechanical state of the crust. Where fluids are drained into the brittle crust, and where these fluids are kept at high pressures, fault creep is supported. Fluid fluxes from deeper levels, in combination with meteoric and crustal metamorphic fluid inflow, and in response to fault creep, leads to high-conductivity zones developing as fault zone conductors in the brittle portion of crust. In turn, the absence of crustal fluid pathways may be characteristic for mechanically locked segments of the fault. Here, MT models suggest that fluids are trapped at depth and kept at high pressures. We speculate that fluids may infiltrate neighboring rocks and in their wake induce non-volcanic tremor.


Geophysics | 2011

Strategies for land-based controlled-source electromagnetic surveying in high-noise regions

Rita Streich; Michael Becken; Ulrich Matzander; Oliver Ritter

Marine controlled-source electromagnetics (CSEM) has become an established exploration tool in the hydrocarbon industry over the last decade; however, this is not the case for land-based CSEM. A possible reason is the perception that electromagnetic field energy traveling through air masks target responses much more than for marine surveys in which the “airwave” energy is attenuated by the conductive water. Various strategies for mitigating air-wave effects have been proposed recently (Loseth et al., 2010; Chen and Alumbaugh, 2011). In this contribution, we focus on other problems limiting the use of land-based CSEM. These include logistical and technical challenges related to high-power current transmission, and the high levels of cultural electromagnetic noise typical of target areas located in populated regions.


Geophysical Prospecting | 2015

Controlled-source electromagnetic monitoring of reservoir oil saturation using a novel borehole-to-surface configuration

Kristina Tietze; Oliver Ritter; Paul Veeken

To advance and optimize secondary and tertiary oil recovery techniques, it is essential to know the areal propagation and distribution of the injected fluids in the subsurface. We investigate the applicability of controlled-source electromagnetic methods to monitor fluid movements in a German oilfield (Bockstedt, onshore Northwest Germany) as injected brines (highly saline formation water) have much lower electrical resistivity than the oil within the reservoir. The main focus of this study is on controlled-source electromagnetic simulations to test the sensitivity of various source–receiver configurations. The background model for the simulations is based on two-dimensional inversion of magnetotelluric data gathered across the oil field and calibrated with resistivity logs. Three-dimensional modelling results suggest that controlled-source electromagnetic methods are sensitive to resistivity changes at reservoir depths, but the effect is difficult to resolve with surface measurements only. Resolution increases significantly if sensors or transmitters can be placed in observation wells closer to the reservoir. In particular, observation of the vertical electric field component in shallow boreholes and/or use of source configurations consisting of combinations of vertical and horizontal dipoles are promising. Preliminary results from a borehole-to-surface controlled-source electromagnetic field survey carried out in spring 2014 are in good agreement with the modelling studies.


Geothermics | 1989

Mapping the geothermal anomaly on the island of Milos by magnetotellurics

V. Haak; Oliver Ritter; P. Ritter

Audiomagnetotelluric and magnetotelluric measurements have been performed on the island of Milos. Importance was attached to robust processing techniques and to the distortion problem at longer periods. The geothermal anomaly displays extremely low resistivities (0.2 ohm.m) at 10 Hz, which corresponds to the upper 200 m. The central anomaly is still seen at periods around 1000 s. The joint mapping of apparent resistivity P ∗ by all groups participating in the experiment indicates the detailed outlines of the anomaly.


Geophysical Research Letters | 2016

Electrical resistivity image of the South Atlantic continental margin derived from onshore and offshore magnetotelluric data

G. Kapinos; U. Weckmann; Marion Jegen-Kulcsar; N. Meqbel; Anne Neska; T. T. Katjiuongua; Sebastian Hoelz; Oliver Ritter

We present a deep electrical resistivity image from the passive continental margin in Namibia. The approximately 700 km long magnetotelluric profile follows the Walvis Ridge offshore, continues onshore across the Kaoko Mobile Belt and reaches onto the Congo Craton. Two-dimensional inversion reveals moderately resistive material offshore, atypically low for oceanic lithosphere, reaching depths of 15–20 km. Such moderate resistivities are consistent with seismic P wave velocity models, which suggest up to 35 km thick crust. The Neoproterozoic rocks of the Kaoko Mobile Belt are resistive, but NNW-striking major shear-zones are imaged as subvertical, conductive structures in the upper and middle crust. Since the geophysical imprint of the shear zones is intact, opening of the South Atlantic in the Cretaceous did not alter the middle crust. The transition into the cratonic region coincides with a deepening of the high-resistive material to depths of more than 60 km.


Archive | 2015

Joint Research Project Brine: Carbon Dioxide Storage in Eastern Brandenburg: Implications for Synergetic Geothermal Heat Recovery and Conceptualization of an Early Warning System Against Freshwater Salinization

Thomas Kempka; R. Herd; Ernst Huenges; Ricarda Endler; Christoph Jahnke; Silvio Janetz; Egbert Jolie; Michael Kuhn; Fabien Magri; Peter Meinert; Inga Moeck; Marcus Möller; Gerard Muñoz; Oliver Ritter; Wladislaw Schafrik; Cornelia Schmidt-Hattenberger; Elena Tillner; Hans-Jürgen Voigt; Günter Zimmermann

Brine was a scientific joint-project implemented to accompany a prospective CO2 storage site in Eastern Brandenburg, Germany. In this context, we investigated if pore pressure elevation in a CO2 storage reservoir can result in shallow freshwater salinization involving the conceptual design of a geophysical early warning system. Furthermore, assessments of a potential synergetic geothermal heat recovery from the CO2 storage reservoir and hydro-mechanical integrity were carried out. The project results demonstrate that potential freshwater salinization is strongly depending on the presence and characteristics of geological weakness zones. The integrated geophysical early warning system allows for reliable monitoring of these potential leakage pathways at different spatial and time scales.


Geophysical Prospecting | 2015

Joint 3D inversion of multiple electromagnetic datasets

Naser Meqbel; Oliver Ritter

Electromagnetic methods are routinely applied to image the subsurface from shallow to regional structures. Individual electromagnetic methods differ in their sensitivities towards resistive and conductive structures and in their exploration depths. If a good balance between different electromagnetic data can be be found, joint 3D inversion of multiple electromagnetic datasets can result in significantly better resolution of subsurface structures than the individual inversions.We present a weighting algorithm to combine magnetotelluric, controlled source electromagnetic, and geoelectric data. Magnetotelluric data are generally more sensitive to regional conductive structures, whereas controlled source electromagnetic and geoelectric data are better suited to recover more shallow and resistive structures. Our new scheme is based on weighting individual components of the total data gradient after each model update. Norms of individual data residuals are used to assess how much of the total data gradient must be assigned to each method to achieve a balanced contribution of all datasets for the joint inverse model. Synthetic inversion tests demonstrate advantages of joint inversion in general and also the influence of the weighting. In our tests, the controlled source electromagnetic data gradients are larger than those of the magnetotelluric and geoelectric datasets. Consequently, direct joint inversion of controlled source electromagnetic, magnetotelluric, and geoelectric data results in models that are mostly dominated by structures required by the controlled source electromagnetic data. Applying the new adaptive weighting scheme results in an inversion model that fits the data better and resembles more the original model. We used the modular system electromagnetic as a framework to implement the new joint inversion and briefly describe the new modules for forward modelling and their interfaces to the modular system electromagnetic package.

Collaboration


Dive into the Oliver Ritter's collaboration.

Top Co-Authors

Avatar

Ute Weckmann

Dublin Institute for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul A. Bedrosian

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Volker Haak

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naser Meqbel

Oregon State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maarten J. de Wit

Nelson Mandela Metropolitan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge