Oliver Schweiger
Helmholtz Centre for Environmental Research - UFZ
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Oliver Schweiger.
Trends in Ecology and Evolution | 2010
Simon G. Potts; Jacobus C. Biesmeijer; Claire Kremen; Peter J. Neumann; Oliver Schweiger; William E. Kunin
Pollinators are a key component of global biodiversity, providing vital ecosystem services to crops and wild plants. There is clear evidence of recent declines in both wild and domesticated pollinators, and parallel declines in the plants that rely upon them. Here we describe the nature and extent of reported declines, and review the potential drivers of pollinator loss, including habitat loss and fragmentation, agrochemicals, pathogens, alien species, climate change and the interactions between them. Pollinator declines can result in loss of pollination services which have important negative ecological and economic impacts that could significantly affect the maintenance of wild plant diversity, wider ecosystem stability, crop production, food security and human welfare.
Nature Climate Change | 2012
Vincent Devictor; Chris van Swaay; Tom Brereton; Lluı´s Brotons; Dan E. Chamberlain; Janne Heliölä; Sergi Herrando; Romain Julliard; Mikko Kuussaari; Åke Lindström; Jiří Reif; David B. Roy; Oliver Schweiger; Josef Settele; Constantí Stefanescu; Arco J. van Strien; Chris Van Turnhout; Zdeněk Vermouzek; Michiel F. WallisDeVries; Irma Wynhoff; Frédéric Jiguet
Climate changes have profound effects on the distribution of numerous plant and animal species(1-3). However, whether and how different taxonomic groups are able to track climate changes at large spatial scales is still unclear. Here, we measure and compare the climatic debt accumulated by bird and butterfly communities at a European scale over two decades (1990-2008). We quantified the yearly change in community composition in response to climate change for 9,490 bird and 2,130 butterfly communities distributed across Europe(4). We show that changes in community composition are rapid but different between birds and butterflies and equivalent to a 37 and 114 km northward shift in bird and butterfly communities, respectively. We further found that, during the same period, the northward shift in temperature in Europe was even faster, so that the climatic debts of birds and butterflies correspond to a 212 and 135 km lag behind climate. Our results indicate both that birds and butterflies do not keep up with temperature increase and the accumulation of different climatic debts for these groups at national and continental scales.
Ecology Letters | 2010
Erik Öckinger; Oliver Schweiger; Thomas O. Crist; Diane M. Debinski; Jochen Krauss; Mikko Kuussaari; Jessica D. Petersen; Juha Pöyry; Josef Settele; Keith S. Summerville; Riccardo Bommarco
There is a lack of quantitative syntheses of fragmentation effects across species and biogeographic regions, especially with respect to species life-history traits. We used data from 24 independent studies of butterflies and moths from a wide range of habitats and landscapes in Europe and North America to test whether traits associated with dispersal capacity, niche breadth and reproductive rate modify the effect of habitat fragmentation on species richness. Overall, species richness increased with habitat patch area and connectivity. Life-history traits improved the explanatory power of the statistical models considerably and modified the butterfly species-area relationship. Species with low mobility, a narrow feeding niche and low reproduction were most strongly affected by habitat loss. This demonstrates the importance of considering life-history traits in fragmentation studies and implies that both species richness and composition change in a predictable manner with habitat loss and fragmentation.
Trends in Ecology and Evolution | 2013
Marten Winter; Vincent Devictor; Oliver Schweiger
To date, there is little evidence that phylogenetic diversity has contributed to nature conservation. Here, we discuss the scientific justification of using phylogenetic diversity in conservation and the reasons for its neglect. We show that, apart from valuing the rarity and richness aspect, commonly quoted justifications based on the usage of phylogenetic diversity as a proxy for functional diversity or evolutionary potential are still based on uncertainties. We discuss how a missing guideline through the variety of phylogenetic diversity metrics and their relevance for conservation might be responsible for the hesitation to include phylogenetic diversity in conservation practice. We outline research routes that can help to ease uncertainties and bridge gaps between research and conservation with respect to phylogenetic diversity.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Marten Winter; Oliver Schweiger; Stefan Klotz; Wolfgang Nentwig; Pavlos Andriopoulos; Margarita Arianoutsou; Corina Basnou; Pinelopi Delipetrou; Viktoras Didžiulis; Martin Hejda; Philip E. Hulme; Philip W. Lambdon; Jan Pergl; Petr Pyšek; David B. Roy; Ingolf Kühn
Human activities have altered the composition of biotas through two fundamental processes: native extinctions and alien introductions. Both processes affect the taxonomic (i.e., species identity) and phylogenetic (i.e., species evolutionary history) structure of species assemblages. However, it is not known what the relative magnitude of these effects is at large spatial scales. Here we analyze the large-scale effects of plant extinctions and introductions on taxonomic and phylogenetic diversity of floras across Europe, using data from 23 regions. Considering both native losses and alien additions in concert reveals that plant invasions since AD 1500 exceeded extinctions, resulting in (i) increased taxonomic diversity (i.e., species richness) but decreased phylogenetic diversity within European regions, and (ii) increased taxonomic and phylogenetic similarity among European regions. Those extinct species were phylogenetically and taxonomically unique and typical of individual regions, and extinctions usually were not continent-wide and therefore led to differentiation. By contrast, because introduced alien species tended to be closely related to native species, the floristic differentiation due to species extinction was lessened by taxonomic and phylogenetic homogenization effects. This was especially due to species that are alien to a region but native to other parts of Europe. As a result, floras of many European regions have partly lost and will continue to lose their uniqueness. The results suggest that biodiversity needs to be assessed in terms of both species taxonomic and phylogenetic identity, but the latter is rarely used as a metric of the biodiversity dynamics.
Science | 2015
Jeremy T. Kerr; Alana Pindar; Paul Galpern; Laurence Packer; Simon G. Potts; Stuart Roberts; Pierre Rasmont; Oliver Schweiger; Sheila R. Colla; Leif L. Richardson; David L. Wagner; Lawrence F. Gall; Derek S. Sikes; Alberto Pantoja
Bucking the trend Responses to climate change have been observed across many species. There is a general trend for species to shift their ranges poleward or up in elevation. Not all species, however, can make such shifts, and these species might experience more rapid declines. Kerr et al. looked at data on bumblebees across North America and Europe over the past 110 years. Bumblebees have not shifted northward and are experiencing shrinking distributions in the southern ends of their range. Such failures to shift may be because of their origins in a cooler climate, and suggest an elevated susceptibility to rapid climate change. Science, this issue p. 177 Cool-adapted bumblebees are failing to shift their ranges in response to climate warming. For many species, geographical ranges are expanding toward the poles in response to climate change, while remaining stable along range edges nearest the equator. Using long-term observations across Europe and North America over 110 years, we tested for climate change–related range shifts in bumblebee species across the full extents of their latitudinal and thermal limits and movements along elevation gradients. We found cross-continentally consistent trends in failures to track warming through time at species’ northern range limits, range losses from southern range limits, and shifts to higher elevations among southern species. These effects are independent of changing land uses or pesticide applications and underscore the need to test for climate impacts at both leading and trailing latitudinal and thermal limits for species.
Biological Reviews | 2010
Oliver Schweiger; Jacobus C. Biesmeijer; Riccardo Bommarco; Thomas Hickler; Philip E. Hulme; Stefan Klotz; Ingolf Kühn; Mari Moora; Anders Nielsen; Ralf Ohlemüller; Theodora Petanidou; Simon G. Potts; Petr Pyšek; Jane C. Stout; Martin T. Sykes; Thomas Tscheulin; Montserrat Vilà; Gian-Reto Walther; Catrin Westphal; Marten Winter; Martin Zobel; Josef Settele
Global change may substantially affect biodiversity and ecosystem functioning but little is known about its effects on essential biotic interactions. Since different environmental drivers rarely act in isolation it is important to consider interactive effects. Here, we focus on how two key drivers of anthropogenic environmental change, climate change and the introduction of alien species, affect plant–pollinator interactions. Based on a literature survey we identify climatically sensitive aspects of species interactions, assess potential effects of climate change on these mechanisms, and derive hypotheses that may form the basis of future research. We find that both climate change and alien species will ultimately lead to the creation of novel communities. In these communities certain interactions may no longer occur while there will also be potential for the emergence of new relationships. Alien species can both partly compensate for the often negative effects of climate change but also amplify them in some cases. Since potential positive effects are often restricted to generalist interactions among species, climate change and alien species in combination can result in significant threats to more specialist interactions involving native species.
Ecology Letters | 2008
Sonja Knapp; Ingolf Kühn; Oliver Schweiger; Stefan Klotz
Cities are hotspots of plant species richness, harboring more species than their rural surroundings, at least over large enough scales. However, species richness does not necessarily cover all aspects of biodiversity such as phylogenetic relationships. Ignoring these relationships, our understanding of how species assemblages develop and change in a changing environment remains incomplete. Given the high vascular plant species richness of urbanized areas in Germany, we asked whether these also have a higher phylogenetic diversity than rural areas, and whether phylogenetic diversity patterns differ systematically between species groups characterized by specific functional traits. Calculating the average phylogenetic distinctness of the total German flora and accounting for spatial autocorrelation, we show that phylogenetic diversity of urban areas does not reflect their high species richness. Hence, high urban species richness is mainly due to more closely related species that are functionally similar and able to deal with urbanization. This diminished phylogenetic information might decrease the floras capacity to respond to environmental changes.
Trends in Ecology and Evolution | 2013
Juan P. González-Varo; Jacobus C. Biesmeijer; Riccardo Bommarco; Simon G. Potts; Oliver Schweiger; Henrik G. Smith; Ingolf Steffan-Dewenter; Hajnalka Szentgyörgyi; Michal Woyciechowski; Montserrat Vilà
Pollination is an essential process in the sexual reproduction of seed plants and a key ecosystem service to human welfare. Animal pollinators decline as a consequence of five major global change pressures: climate change, landscape alteration, agricultural intensification, non-native species, and spread of pathogens. These pressures, which differ in their biotic or abiotic nature and their spatiotemporal scales, can interact in nonadditive ways (synergistically or antagonistically), but are rarely considered together in studies of pollinator and/or pollination decline. Management actions aimed at buffering the impacts of a particular pressure could thereby prove ineffective if another pressure is present. Here, we focus on empirical evidence of the combined effects of global change pressures on pollination, highlighting gaps in current knowledge and future research needs.
Oecologia | 2008
Oliver Schweiger; Stefan Klotz; Walter Durka; Ingolf Kühn
Traditional measures of biodiversity, such as species richness, usually treat species as being equal. As this is obviously not the case, measuring diversity in terms of features accumulated over evolutionary history provides additional value to theoretical and applied ecology. Several phylogenetic diversity indices exist, but their behaviour has not yet been tested in a comparative framework. We provide a test of ten commonly used phylogenetic diversity indices based on 40 simulated phylogenies of varying topology. We restrict our analysis to a topological fully resolved tree without information on branch lengths and species lists with presence–absence data. A total of 38,000 artificial communities varying in species richness covering 5–95% of the phylogenies were created by random resampling. The indices were evaluated based on their ability to meet a priori defined requirements. No index meets all requirements, but three indices turned out to be more suitable than others under particular conditions. Average taxonomic distinctness (AvTD) and intensive quadratic entropy (J) are calculated by averaging and are, therefore, unbiased by species richness while reflecting phylogeny per se well. However, averaging leads to the violation of set monotonicity, which requires that species extinction cannot increase the index. Total taxonomic distinctness (TTD) sums up distinctiveness values for particular species across the community. It is therefore strongly linked to species richness and reflects phylogeny per se weakly but satisfies set monotonicity. We suggest that AvTD and J are best applied to studies that compare spatially or temporally rather independent communities that potentially vary strongly in their phylogenetic composition—i.e. where set monotonicity is a more negligible issue, but independence of species richness is desired. In contrast, we suggest that TTD be used in studies that compare rather interdependent communities where changes occur more gradually by species extinction or introduction. Calculating AvTD or TTD, depending on the research question, in addition to species richness is strongly recommended.