Oliver Semler
University of Cologne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Oliver Semler.
American Journal of Human Genetics | 2011
Jutta Becker; Oliver Semler; Christian Gilissen; Yun Li; Hanno J. Bolz; Cecilia Giunta; Carsten Bergmann; Marianne Rohrbach; Friederike Koerber; Katharina Zimmermann; Petra de Vries; Brunhilde Wirth; Eckhard Schoenau; Bernd Wollnik; Joris A. Veltman; Alexander Hoischen; Christian Netzer
Osteogenesis imperfecta (OI) is a heterogeneous genetic disorder characterized by bone fragility and susceptibility to fractures after minimal trauma. After mutations in all known OI genes had been excluded by Sanger sequencing, we applied next-generation sequencing to analyze the exome of a single individual who has a severe form of the disease and whose parents are second cousins. A total of 26,922 variations from the human reference genome sequence were subjected to several filtering steps. In addition, we extracted the genotypes of all dbSNP130-annotated SNPs from the exome sequencing data and used these 299,494 genotypes as markers for the genome-wide identification of homozygous regions. A single homozygous truncating mutation, affecting SERPINF1 on chromosome 17p13.3, that was embedded into a homozygous stretch of 2.99 Mb remained. The mutation was also homozygous in the affected brother of the index patient. Subsequently, we identified homozygosity for two different truncating SERPINF1 mutations in two unrelated patients with OI and parental consanguinity. All four individuals with SERPINF1 mutations have severe OI. Fractures of long bones and severe vertebral compression fractures with resulting deformities were observed as early as the first year of life in these individuals. Collagen analyses with cultured dermal fibroblasts displayed no evidence for impaired collagen folding, posttranslational modification, or secretion. SERPINF1 encodes pigment epithelium-derived factor (PEDF), a secreted glycoprotein of the serpin superfamily. PEDF is a multifunctional protein and one of the strongest inhibitors of angiogenesis currently known in humans. Our data provide genetic evidence for PEDF involvement in human bone homeostasis.
American Journal of Human Genetics | 2012
P.V. Asharani; Katharina Keupp; Oliver Semler; Wenshen Wang; Yun Li; Holger Thiele; Gökhan Yigit; Esther Pohl; Jutta Becker; Peter Frommolt; Carmen Sonntag; Janine Altmüller; Katharina Zimmermann; Daniel S. Greenspan; Nurten Akarsu; Christian Netzer; Eckhard Schönau; Radu Wirth; Matthias Hammerschmidt; Peter Nürnberg; Bernd Wollnik; Thomas J. Carney
Bone morphogenetic protein 1 (BMP1) is an astacin metalloprotease with important cellular functions and diverse substrates, including extracellular-matrix proteins and antagonists of some TGFβ superfamily members. Combining whole-exome sequencing and filtering for homozygous stretches of identified variants, we found a homozygous causative BMP1 mutation, c.34G>C, in a consanguineous family affected by increased bone mineral density and multiple recurrent fractures. The mutation is located within the BMP1 signal peptide and leads to impaired secretion and an alteration in posttranslational modification. We also characterize a zebrafish bone mutant harboring lesions in bmp1a, demonstrating conservation of BMP1 function in osteogenesis across species. Genetic, biochemical, and histological analyses of this mutant and a comparison to a second, similar locus reveal that Bmp1a is critically required for mature-collagen generation, downstream of osteoblast maturation, in bone. We thus define the molecular and cellular bases of BMP1-dependent osteogenesis and show the importance of this protein for bone formation and stability.
The Lancet | 2013
Nick Bishop; Silvano Adami; S. Faisal Ahmed; Jordi Anton; Paul Arundel; Christine Burren; Jean-Pierre Devogelaer; Thomas N. Hangartner; Éva Hosszú; Joseph M. Lane; R. Lorenc; Outi Mäkitie; Craig Munns; Ana Paredes; Helene Pavlov; Horacio Plotkin; Cathleen L. Raggio; María Loreto Reyes; Eckhard Schoenau; Oliver Semler; David Sillence; Robert D Steiner
BACKGROUND Children with osteogenesis imperfecta are often treated with intravenous bisphosphonates. We aimed to assess the safety and efficacy of risedronate, an orally administered third-generation bisphosphonate, in children with the disease. METHODS In this multicentre, randomised, parallel, double-blind, placebo-controlled trial, children aged 4-15 years with osteogenesis imperfecta and increased fracture risk were randomly assigned by telephone randomisation system in a 2:1 ratio to receive either daily risedronate (2·5 or 5 mg) or placebo for 1 year. Study treatment was masked from patients, investigators, and study centre personnel. Thereafter, all children received risedronate for 2 additional years in an open-label extension. The primary efficacy endpoint was percentage change in lumbar spine areal bone mineral density (BMD) at 1 year. The primary efficacy analysis was done by ANCOVA, with treatment, age group, and pooled centre as fixed effects, and baseline as covariate. Analyses were based on the intention-to-treat population, which included all patients who were randomly assigned and took at least one dose of assigned study treatment. The trial is registered with ClinicalTrials.gov, number NCT00106028. FINDINGS Of 147 patients, 97 were randomly assigned to the risedronate group and 50 to the placebo group. Three patients from the risedronate group and one from the placebo group did not receive study treatment, leaving 94 and 49 in the intention-to-treat population, respectively. The mean increase in lumbar spine areal BMD after 1 year was 16·3% in the risedronate group and 7·6% in the placebo group (difference 8·7%, 95% CI 5·7-11·7; p<0·0001). After 1 year, clinical fractures had occurred in 29 (31%) of 94 patients in the risedronate group and 24 (49%) of 49 patients in the placebo group (p=0·0446). During years 2 and 3 (open-label phase), clinical fractures were reported in 46 (53%) of 87 patients in the group that had received risedronate since the start of the study, and 32 (65%) of 49 patients in the group that had been given placebo during the first year. Adverse event profiles were otherwise similar between the two groups, including frequencies of reported upper-gastrointestinal and selected musculoskeletal adverse events. INTERPRETATION Oral risedronate increased areal BMD and reduced the risk of first and recurrent clinical fractures in children with osteogenesis imperfecta, and the drug was generally well tolerated. Risedronate should be regarded as a treatment option for children with osteogenesis imperfecta. FUNDING Alliance for Better Bone Health (Warner Chilcott and Sanofi).
American Journal of Human Genetics | 2015
Lutz Garbes; Kyung-Ho Kim; Angelika Rieß; Heike Hoyer-Kuhn; Filippo Beleggia; Andrea Bevot; Mi Jeong Kim; Yang Hoon Huh; Hee Seok Kweon; Ravi Savarirayan; David J. Amor; Purvi M. Kakadia; Tobias Lindig; Karl Oliver Kagan; Jutta Becker; Simeon A. Boyadjiev; Bernd Wollnik; Oliver Semler; Stefan K. Bohlander; Jinoh Kim; Christian Netzer
As a result of a whole-exome sequencing study, we report three mutant alleles in SEC24D, a gene encoding a component of the COPII complex involved in protein export from the ER: the truncating mutation c.613C>T (p.Gln205(∗)) and the missense mutations c.3044C>T (p.Ser1015Phe, located in a cargo-binding pocket) and c.2933A>C (p.Gln978Pro, located in the gelsolin-like domain). Three individuals from two families affected by a similar skeletal phenotype were each compound heterozygous for two of these mutant alleles, with c.3044C>T being embedded in a 14 Mb founder haplotype shared by all three. The affected individuals were a 7-year-old boy with a phenotype most closely resembling Cole-Carpenter syndrome and two fetuses initially suspected to have a severe type of osteogenesis imperfecta. All three displayed a severely disturbed ossification of the skull and multiple fractures with prenatal onset. The 7-year-old boy had short stature and craniofacial malformations including macrocephaly, midface hypoplasia, micrognathia, frontal bossing, and down-slanting palpebral fissures. Electron and immunofluorescence microscopy of skin fibroblasts of this individual revealed that ER export of procollagen was inefficient and that ER tubules were dilated, faithfully reproducing the cellular phenotype of individuals with cranio-lentico-sutural dysplasia (CLSD). CLSD is caused by SEC23A mutations and displays a largely overlapping craniofacial phenotype, but it is not characterized by generalized bone fragility and presented with cataracts in the original family described. The cellular and morphological phenotypes we report are in concordance with the phenotypes described for the Sec24d-deficient fish mutants vbi (medaka) and bulldog (zebrafish).
Clinical Rehabilitation | 2008
Oliver Semler; Oliver Fricke; Katharina Vezyroglou; Christina Stark; Angelika Stabrey; Eckhard Schoenau
Objective: To evaluate the effect of whole body vibration on the mobility of long-term immobilized children and adolescents with a severe form of osteogenesis imperfecta. Osteogenesis imperfecta is a hereditary primary bone disorder with a prevalence from 1 in 10000 to 1 in 20000 births. Most of these children are suffering from long-term immobilization after recurrent fractures. Due to the immobilization they are affected by loss of muscle (sarcopenia) and secondary loss of bone mass. Subjects: Whole body vibration was applied to eight children and adolescents (osteogenesis imperfecta type 3, N=5; osteogenesis imperfecta type 4, N=3) over a period of six months. Interventions and results: Whole body vibration was applied by a vibrating platform (Galileo Systems) constructed on a tilting-table. Success of treatment was assessed by measuring alterations of the tilting-angle and evaluating the mobility (Brief Assessment of Motor Function). All individuals were characterized by improved muscle force documented by an increased tilting-angle (median = 35 degrees) or by an increase in ground reaction force (median at start=30.0 [N/kg] (14.48—134.21); median after six months = 146.0 [N/kg] (42.46—245.25). Conclusions: Whole body vibration may be a promising approach to improve mobility in children and adolescents severely affected with osteogenesis imperfecta.
Orphanet Journal of Rare Diseases | 2014
Heike Hoyer-Kuhn; Christian Netzer; Friederike Koerber; Eckhard Schoenau; Oliver Semler
BackgroundOsteogenesis imperfecta (OI) is a hereditary disease causing reduced bone mass, increased fracture rate, long bone deformities and vertebral compressions. Additional non skeletal findings are caused by impaired collagen function and include hyperlaxity of joints and blue sclera. Most OI cases are caused by dominant mutations in COL1A1/2 affecting bone formation. During the last years, recessive forms of OI have been identified, mostly affecting posttranslational modification of collagen. In 2011, mutations in SERPINF1 were identified as the molecular cause of OI type VI, and thereby a novel pathophysiology of the disease was elucidated. The subgroup of patients with OI type VI are affected by an increased bone resorption, leading to the same symptoms as observed in patients with an impaired bone formation. Severely affected children are currently treated with intravenous bisphosphonates regardless of the underlying mutation and pathophysiology. Patients with OI type VI are known to have a poor response to such a bisphosphonate treatment.MethodDeciphering the genetic cause of OI type VI in our 4 patients (three children and one adolescent) led to an immediate translational approach in the form of a treatment with the monoclonal RANKL antibody Denosumab (1 mg/kg body weight every 12 weeks).ResultsShort-term biochemical response to this treatment was reported previously. We now present the results after 2 years of treatment and demonstrate a long term benefit as well as an increase of bone mineral density, a normalization of vertebral shape, an increase of mobility, and a reduced fracture rate.ConclusionThis report presents the first two-year data of denosumab treatment in patients with Osteogenesis imperfecta type VI and in Osteogenesis imperfecta in general as an effective and apparently safe treatment option.
European Journal of Human Genetics | 2011
Christine M. Laine; Boi-Dinh Chung; Miki Susic; Trine Prescott; Oliver Semler; Torunn Fiskerstrand; Patrizia d'Eufemia; Marco Castori; Minna Pekkinen; Etienne Sochett; William G. Cole; Christian Netzer; Outi Mäkitie
Osteoporosis-pseudoglioma sydrome (OPPG) is an autosomal recessive disorder with early-onset severe osteoporosis and blindness, caused by biallelic loss-of-function mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) gene. Heterozygous carriers exhibit a milder bone phenotype. Only a few splice mutations in LRP5 have been published. We present clinical and genetic data for four patients with novel LRP5 mutations, three of which affect splicing. Patients were evaluated clinically and by radiography and bone densitometry. Genetic screening of LRP5 was performed on the basis of the clinical diagnosis of OPPG. Splice aberrances were confirmed by cDNA sequencing or exon trapping. The effect of one splice mutation on LRP5 protein function was studied. A novel splice-site mutation c.1584+4A>T abolished the donor splice site of exon 7 and activated a cryptic splice site, which led to an in-frame insertion of 21 amino acids (p.E528_V529ins21). Functional studies revealed severely impaired signal transduction presumably caused by defective intracellular transport of the mutated receptor. Exon trapping was used on two samples to confirm that splice-site mutations c.4112-2A>G and c.1015+1G>T caused splicing-out of exons 20 and 5, respectively. One patient carried a homozygous deletion of exon 4 causing the loss of exons 4 and 5, as demonstrated by cDNA analysis. Our results broaden the spectrum of mutations in LRP5 and provide the first functional data on splice aberrations.
European Spine Journal | 2013
S. Langensiepen; Oliver Semler; Rolf Sobottke; O. Fricke; J. Franklin; Eckhard Schönau; P. Eysel
BackgroundScoliosis of the vertebral column can be assessed with the Cobb angle (Cobb 1948). This examination is performed manually by measuring the angle on radiographs and is considered the gold standard. However, studies evaluating the reproducibility of this procedure have shown high variability in intra- and inter-observer agreement. Because of technical advancements, interests in new procedures to determine the Cobb angle has been renewed. This review aims to systematically investigate the reproducibility of various new techniques to determine the Cobb angle in idiopathic scoliosis and to assess whether new technical procedures are reasonable alternatives when compared to manual measurement of the Cobb angle.MethodSystematic review. Studies examining procedures used to determine the Cobb angle were selected. Two review authors independently selected studies for inclusion, extracted data and assessed risk of bias. Statistical results of reliability and agreement were summarised and described.ResultsEleven studies of new measuring procedures were included, all reporting the reproducibility. The new procedures can be divided into computer-assisted procedures, automatic procedures and smartphone apps.ConclusionsAll investigated measuring procedures showed high degrees of reliability. In general, digital procedures tend to be slightly better than manual ones. For all other measurement procedures (automatic or smartphone), results varied. Studies implementing vertebral pre-selection and observer training achieved better agreement.
The Journal of Clinical Endocrinology and Metabolism | 2014
Heike Hoyer-Kuhn; Oliver Semler; Eckhard Schoenau
Children with increased bone fragility have been treated frequently with iv bisphosphonates based on experiences in children with osteogenesis imperfecta (OI) (1). In growing children, each infusion led to a region with reduced bone resorption known as “zebra lines” on radiographs and changes in metaphyseal shaping (2). First short-term experiences about the use of the RANKL-antibody denosumab in children are available. Wang and colleagues recently reported radiological and histological changes after denosumab treatment in a boy with the rare condition, fibrous dysplasia, after amputation of both legs (3). Now we report two children with OI caused by mutations in COL1A1/A2 who received bisphosphonates for more than 4 years and switched to denosumab (1 mg/kg body weight every 12 wk) according to the regime published in other OI children (4). On the presented x-rays, the effect of denosumab is clearly visible (Figure 1). Zebra lines of the previous treatment are still visible, whereas the bone produced between the denosumab injections showed an increased density, demonstrating the long-lasting effect of denosumab (Figure 1, B–D). This gives evidence that longitudinal growth continues. Metaphyseal shaping including the metaphyseal index showed a trend toward the normal range but remained above 2 SD compared to healthy children (patient 1, baseline vs months 8, 0.65/0.63; patient 2, wk 3 vs week 9, 0.73/0.61) (5). Further long-term observations are needed to assess metaphyseal in-wasting processes under denosumab. In summary, these x-rays are the first demonstrating the effect of denosumab in OI supporting the promising reports about denosumab in growing children.
Journal of Bone and Mineral Research | 2014
Heike Hoyer-Kuhn; Oliver Semler; Lutz Garbes; Katharina Zimmermann; Jutta Becker; Bernd Wollnik; Eckhard Schoenau; Christian Netzer
Osteogenesis imperfecta (OI) is a hereditary connective tissue disorder characterized by a wide range of skeletal symptoms. Most patients have dominantly inherited or de novo mutations in COL1A1 or COL1A2. Up to 5% of patients have OI type V, characterized by hyperplastic callus formation after fractures, calcification of the interosseous membrane of the forearm, and a mesh‐like lamellation pattern observed in bone histology. Recently, a heterozygous mutation in the 5′‐untranslated region (UTR) of IFITM5 (c.–14C > T) was identified as the underlying cause of OI type V, and only this specific mutation was subsequently identified in all patient cohorts with this OI subtype. We now present a case of a heterozygous mutation within the coding region of IFITM5 (c.119C > T; p.S40L). The mutation occurred de novo in the patient and resulted in severe OI with prenatal onset and extreme short stature. At the age of 19 months, the typical clinical hallmarks of OI type V were not present. Our finding has important consequences for the genetic “work‐up” of patients suspected to have OI, both in prenatal and in postnatal settings: The entire gene—not only the 5′‐UTR harboring the “classical” OI type V mutation—has to be analyzed to exclude a causal role of IFITM5. We propose that this should be part of the initial diagnostic steps for genetic laboratories performing SANGER sequencing in OI patients.