Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oliver Welz is active.

Publication


Featured researches published by Oliver Welz.


Science | 2012

Direct Kinetic Measurements of Criegee Intermediate (CH2OO) Formed by Reaction of CH2I with O2

Oliver Welz; John D. Savee; David L. Osborn; Subith Vasu; Carl J. Percival; Dudley E. Shallcross; Craig A. Taatjes

Criegee Sighting Standard mechanistic models for the reaction of ozone with unsaturated hydrocarbons implicate a transient carbonyl oxide compound, termed the “Criegee intermediate,” which has largely eluded detection. Welz et al. (p. 204; see the Perspective by Marston) have now detected the compound by using mass spectrometry, following the low-pressure photolytic reaction of oxygen with diiodomethane, and measured its decay kinetics in the presence of nitric oxide, nitrogen dioxide, and sulfur dioxide. Reaction rates were higher than expected, suggesting that the intermediate may play a more prominent role in atmospheric chemistry than previously assumed. An elusive intermediate implicated in atmospheric oxidation chemistry has been identified in the laboratory. Ozonolysis is a major tropospheric removal mechanism for unsaturated hydrocarbons and proceeds via “Criegee intermediates”—carbonyl oxides—that play a key role in tropospheric oxidation models. However, until recently no gas-phase Criegee intermediate had been observed, and indirect determinations of their reaction kinetics gave derived rate coefficients spanning orders of magnitude. Here, we report direct photoionization mass spectrometric detection of formaldehyde oxide (CH2OO) as a product of the reaction of CH2I with O2. This reaction enabled direct laboratory determinations of CH2OO kinetics. Upper limits were extracted for reaction rate coefficients with NO and H2O. The CH2OO reactions with SO2 and NO2 proved unexpectedly rapid and imply a substantially greater role of carbonyl oxides in models of tropospheric sulfate and nitrate chemistry than previously assumed.


Science | 2013

Direct Measurements of Conformer-Dependent Reactivity of the Criegee Intermediate CH3CHOO.

Craig A. Taatjes; Oliver Welz; Arkke J. Eskola; John D. Savee; Adam M. Scheer; Dudley E. Shallcross; Brandon Rotavera; Edmond P. F. Lee; John M. Dyke; Daniel K. W. Mok; David L. Osborn; Carl J. Percival

More Criegee Sightings The reaction of ozone with unsaturated hydrocarbons produces short-lived molecules termed Criegee intermediates. The simplest such molecule, H2CO2, was recently detected and monitored in the laboratory. Su et al. (p. 174; see the Perspective by Vereecken) have obtained its vibrational spectrum, which could ultimately enable direct measurements of its reactivity in the atmosphere. Taatjes et al. (p. 177; see the Perspective by Vereecken) report on the laboratory preparation and reactivity of the next heavier Criegee intermediate, which bears a methyl group in place of one of the hydrogen atoms. The reaction kinetics of an intermediate implicated in atmospheric ozone chemistry has been measured in the laboratory. [Also see Perspective by Vereecken] Although carbonyl oxides, “Criegee intermediates,” have long been implicated in tropospheric oxidation, there have been few direct measurements of their kinetics, and only for the simplest compound in the class, CH2OO. Here, we report production and reaction kinetics of the next larger Criegee intermediate, CH3CHOO. Moreover, we independently probed the two distinct CH3CHOO conformers, syn- and anti-, both of which react readily with SO2 and with NO2. We demonstrate that anti-CH3CHOO is substantially more reactive toward water and SO2 than is syn-CH3CHOO. Reaction with water may dominate tropospheric removal of Criegee intermediates and determine their atmospheric concentration. An upper limit is obtained for the reaction of syn-CH3CHOO with water, and the rate constant for reaction of anti-CH3CHOO with water is measured as 1.0 × 10−14 ± 0.4 × 10−14 centimeter3 second−1.


Physical Chemistry Chemical Physics | 2012

Direct measurement of Criegee intermediate (CH2OO) reactions with acetone, acetaldehyde, and hexafluoroacetone

Craig A. Taatjes; Oliver Welz; Arkke J. Eskola; John D. Savee; David L. Osborn; Edmond P. F. Lee; John M. Dyke; Daniel W. K. Mok; Dudley E. Shallcross; Carl J. Percival

Criegee biradicals, i.e., carbonyl oxides, are critical intermediates in ozonolysis and have been implicated in autoignition chemistry and other hydrocarbon oxidation systems, but until recently the direct measurement of their gas-phase kinetics has not been feasible. Indirect determinations of Criegee intermediate kinetics often rely on the introduction of a scavenger molecule into an ozonolysis system and analysis of the effects of the scavenger on yields of products associated with Criegee intermediate reactions. Carbonyl species, in particular hexafluoroacetone (CF(3)COCF(3)), have often been used as scavengers. In this work, the reactions of the simplest Criegee intermediate, CH(2)OO (formaldehyde oxide), with three carbonyl species have been measured by laser photolysis/tunable synchrotron photoionization mass spectrometry. Diiodomethane photolysis produces CH(2)I radicals, which react with O(2) to yield CH(2)OO + I. The formaldehyde oxide is reacted with a large excess of a carbonyl reactant and both the disappearance of CH(2)OO and the formation of reaction products are monitored. The rate coefficient for CH(2)OO + hexafluoroacetone is k(1) = (3.0 ± 0.3) × 10(-11) cm(3) molecule(-1) s(-1), supporting the use of hexafluoroacetone as a Criegee-intermediate scavenger. The reactions with acetaldehyde, k(2) = (9.5 ± 0.7) × 10(-13) cm(3) molecule(-1) s(-1), and with acetone, k(3) = (2.3 ± 0.3) × 10(-13) cm(3) molecule(-1) s(-1), are substantially slower. Secondary ozonides and products of ozonide isomerization are observed from the reactions of CH(2)OO with acetone and hexafluoroacetone. Their photoionization spectra are interpreted with the aid of quantum-chemical and Franck-Condon-factor calculations. No secondary ozonide was observable in the reaction of CH(2)OO with acetaldehyde, but acetic acid was identified as a product under the conditions used (4 Torr and 293 K).


Angewandte Chemie | 2014

Rate Coefficients of C1 and C2 Criegee Intermediate Reactions with Formic and Acetic Acid Near the Collision Limit: Direct Kinetics Measurements and Atmospheric Implications

Oliver Welz; Arkke J. Eskola; Leonid Sheps; Brandon Rotavera; John D. Savee; Adam M. Scheer; David L. Osborn; Douglas Lowe; A. Murray Booth; Ping Xiao; M. Anwar H. Khan; Carl J. Percival; Dudley E. Shallcross; Craig A. Taatjes

Rate coefficients are directly determined for the reactions of the Criegee intermediates (CI) CH2OO and CH3CHOO with the two simplest carboxylic acids, formic acid (HCOOH) and acetic acid (CH3COOH), employing two complementary techniques: multiplexed photoionization mass spectrometry and cavity-enhanced broadband ultraviolet absorption spectroscopy. The measured rate coefficients are in excess of 1×10−10 cm3 s−1, several orders of magnitude larger than those suggested from many previous alkene ozonolysis experiments and assumed in atmospheric modeling studies. These results suggest that the reaction with carboxylic acids is a substantially more important loss process for CIs than is presently assumed. Implementing these rate coefficients in global atmospheric models shows that reactions between CI and organic acids make a substantial contribution to removal of these acids in terrestrial equatorial areas and in other regions where high CI concentrations occur such as high northern latitudes, and implies that sources of acids in these areas are larger than previously recognized.


Journal of Chemical Physics | 2012

Absolute photoionization cross-section of the propargyl radical.

John D. Savee; Satchin Soorkia; Oliver Welz; Talitha M. Selby; Craig A. Taatjes; David L. Osborn

Using synchrotron-generated vacuum-ultraviolet radiation and multiplexed time-resolved photoionization mass spectrometry we have measured the absolute photoionization cross-section for the propargyl (C(3)H(3)) radical, σ(propargyl) (ion)(E), relative to the known absolute cross-section of the methyl (CH(3)) radical. We generated a stoichiometric 1:1 ratio of C(3)H(3):CH(3) from 193 nm photolysis of two different C(4)H(6) isomers (1-butyne and 1,3-butadiene). Photolysis of 1-butyne yielded values of σ(propargyl)(ion)(10.213 eV)=(26.1±4.2) Mb and σ(propargyl)(ion)(10.413 eV)=(23.4±3.2) Mb, whereas photolysis of 1,3-butadiene yielded values of σ(propargyl)(ion)(10.213 eV)=(23.6±3.6) Mb and σ(propargyl)(ion)(10.413 eV)=(25.1±3.5) Mb. These measurements place our relative photoionization cross-section spectrum for propargyl on an absolute scale between 8.6 and 10.5 eV. The cross-section derived from our results is approximately a factor of three larger than previous determinations.


Science | 2015

Direct observation and kinetics of a hydroperoxyalkyl radical (QOOH)

John D. Savee; Ewa Papajak; Brandon Rotavera; Haifeng Huang; Arkke J. Eskola; Oliver Welz; Leonid Sheps; Craig A. Taatjes; Judit Zádor; David L. Osborn

Catching a glimpse of the elusive QOOH Its straightforward to write down the net combustion reaction: Oxygen reacts with hydrocarbons to form water and carbon dioxide. The details of how all the bonds break and form in succession are a great deal more complicated. Savee et al. now report direct detection of a long-postulated piece of the puzzle, a so-called QOOH intermediate. This structure results from bound oxygen stripping a hydrogen atom from carbon, leaving a carbon-centered radical behind. The study explores the influence of the hydrocarbons unsaturation on the stability of QOOH, which has implications for both combustion and tropospheric oxidation chemistry. Science, this issue p. 643 A long-sought reactive intermediate in hydrocarbon oxidation is observed via mass spectrometry. Oxidation of organic compounds in combustion and in Earth’s troposphere is mediated by reactive species formed by the addition of molecular oxygen (O2) to organic radicals. Among the most crucial and elusive of these intermediates are hydroperoxyalkyl radicals, often denoted “QOOH.” These species and their reactions with O2 are responsible for the radical chain branching that sustains autoignition and are implicated in tropospheric autoxidation that can form low-volatility, highly oxygenated organic aerosol precursors. We report direct observation and kinetics measurements of a QOOH intermediate in the oxidation of 1,3-cycloheptadiene, a molecule that offers insight into both resonance-stabilized and nonstabilized radical intermediates. The results establish that resonance stabilization dramatically changes QOOH reactivity and, hence, that oxidation of unsaturated organics can produce exceptionally long-lived QOOH intermediates.


Physical Chemistry Chemical Physics | 2013

Directly measuring reaction kinetics of ˙QOOH – a crucial but elusive intermediate in hydrocarbon autoignition

Judit Zádor; Haifeng Huang; Oliver Welz; Johan Zetterberg; David L. Osborn; Craig A. Taatjes

Hydrocarbon autoignition has long been an area of intense fundamental chemical interest, and is a key technological process for emerging clean and efficient combustion strategies. Carbon-centered radicals containing an -OOH group, commonly denoted ˙QOOH radicals, are produced by isomerization of the alkylperoxy radicals that are formed in the first stages of oxidation. These ˙QOOH radicals are among the most critical species for modeling autoignition, as their reactions with O2 are responsible for chain branching below 1000 K. Despite their importance, no ˙QOOH radicals have ever been observed by any means, and only computational and indirect experimental evidence has been available on their reactivity. Here, we directly produce a ˙QOOH radical, 2-hydroperoxy-2-methylprop-1-yl, and experimentally determine rate coefficients for its unimolecular decomposition and its association reaction with O2. The results are supported by high-level theoretical kinetics calculations. Our experimental strategy opens up a new avenue to study the chemistry of ˙QOOH radicals in isolation.


Journal of Physical Chemistry A | 2017

Direct Measurements of Unimolecular and Bimolecular Reaction Kinetics of the Criegee Intermediate (CH3)2COO

Rabi Chhantyal-Pun; Oliver Welz; John D. Savee; Arkke J. Eskola; Edmond P. F. Lee; Lucy Blacker; Henry R. Hill; Matilda Ashcroft; M. Anwar H. Khan; Guy C. Lloyd-Jones; Louise A. Evans; Brandon Rotavera; Haifeng Huang; David L. Osborn; Daniel K. W. Mok; John M. Dyke; Dudley E. Shallcross; Carl J. Percival; Andrew J. Orr-Ewing; Craig A. Taatjes

The Criegee intermediate acetone oxide, (CH3)2COO, is formed by laser photolysis of 2,2-diiodopropane in the presence of O2 and characterized by synchrotron photoionization mass spectrometry and by cavity ring-down ultraviolet absorption spectroscopy. The rate coefficient of the reaction of the Criegee intermediate with SO2 was measured using photoionization mass spectrometry and pseudo-first-order methods to be (7.3 ± 0.5) × 10-11 cm3 s-1 at 298 K and 4 Torr and (1.5 ± 0.5) × 10-10 cm3 s-1 at 298 K and 10 Torr (He buffer). These values are similar to directly measured rate coefficients of anti-CH3CHOO with SO2, and in good agreement with recent UV absorption measurements. The measurement of this reaction at 293 K and slightly higher pressures (between 10 and 100 Torr) in N2 from cavity ring-down decay of the ultraviolet absorption of (CH3)2COO yielded even larger rate coefficients, in the range (1.84 ± 0.12) × 10-10 to (2.29 ± 0.08) × 10-10 cm3 s-1. Photoionization mass spectrometry measurements with deuterated acetone oxide at 4 Torr show an inverse deuterium kinetic isotope effect, kH/kD = (0.53 ± 0.06), for reactions with SO2, which may be consistent with recent suggestions that the formation of an association complex affects the rate coefficient. The reaction of (CD3)2COO with NO2 has a rate coefficient at 298 K and 4 Torr of (2.1 ± 0.5) × 10-12 cm3 s-1 (measured with photoionization mass spectrometry), again similar to rate for the reaction of anti-CH3CHOO with NO2. Cavity ring-down measurements of the acetone oxide removal without added reagents display a combination of first- and second-order decay kinetics, which can be deconvolved to derive values for both the self-reaction of (CH3)2COO and its unimolecular thermal decay. The inferred unimolecular decay rate coefficient at 293 K, (305 ± 70) s-1, is similar to determinations from ozonolysis. The present measurements confirm the large rate coefficient for reaction of (CH3)2COO with SO2 and the small rate coefficient for its reaction with water. Product measurements of the reactions of (CH3)2COO with NO2 and with SO2 suggest that these reactions may facilitate isomerization to 2-hydroperoxypropene, possibly by subsequent reactions of association products.


Journal of Physical Chemistry Letters | 2013

Unconventional Peroxy Chemistry in Alcohol Oxidation: The Water Elimination Pathway.

Oliver Welz; Stephen J. Klippenstein; Lawrence B. Harding; Craig A. Taatjes; Judit Zádor

Predictive simulation for designing efficient engines requires detailed modeling of combustion chemistry, for which the possibility of unknown pathways is a continual concern. Here, we characterize a low-lying water elimination pathway from key hydroperoxyalkyl (QOOH) radicals derived from alcohols. The corresponding saddle-point structure involves the interaction of radical and zwitterionic electronic states. This interaction presents extreme difficulties for electronic structure characterizations, but we demonstrate that these properties of this saddle point can be well captured by M06-2X and CCSD(T) methods. Experimental evidence for the existence and relevance of this pathway is shown in recently reported data on the low-temperature oxidation of isopentanol and isobutanol. In these systems, water elimination is a major pathway, and is likely ubiquitous in low-temperature alcohol oxidation. These findings will substantially alter current alcohol oxidation mechanisms. Moreover, the methods described will be useful for the more general phenomenon of interacting radical and zwitterionic states.


Journal of Chemical Physics | 2006

Accurate computational determination of the binding energy of the SO3∙H2O complex

Heike Fliegl; Andreas Glöß; Oliver Welz; Matthias Olzmann; Wim Klopper

Reliable thermochemical data for the reaction SO3 + H2O<-->SO3 x H2O (1a) are of crucial importance for an adequate modeling of the homogeneous H2SO4 formation in the atmosphere. We report on high-level quantum chemical calculations to predict the binding energy of the SO3 x H2O complex. The electronic binding energy is accurately computed to De = 40.9+/-1.0 kJ/mol = 9.8+/-0.2 kcal/mol. By using harmonic frequencies from density functional theory calculations (B3LYP/cc-pVTZ and TPSS/def2-TZVP), zero-point and thermal energies were calculated. From these data, we estimate D0 = -Delta H(1a)0(0 K) = 7.7+/-0.5 kcal/mol and Delta H(1a)0(298 K) = -8.3+/-1.0 kcal/mol.

Collaboration


Dive into the Oliver Welz's collaboration.

Top Co-Authors

Avatar

Craig A. Taatjes

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

David L. Osborn

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

John D. Savee

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Arkke J. Eskola

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Leonid Sheps

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Adam M. Scheer

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Judit Zádor

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Judit Zador

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge