Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oliver Winz is active.

Publication


Featured researches published by Oliver Winz.


The Journal of Neuroscience | 2008

Mesolimbic Functional Magnetic Resonance Imaging Activations during Reward Anticipation Correlate with Reward-Related Ventral Striatal Dopamine Release

Björn H. Schott; Luciano Minuzzi; Ruth M. Krebs; David Elmenhorst; Markus Lang; Oliver Winz; Constanze I. Seidenbecher; Heinz H. Coenen; Hans-Jochen Heinze; Karl Zilles; Emrah Düzel; Andreas Bauer

The dopaminergic mechanisms that control reward-motivated behavior are the subject of intense study, but it is yet unclear how, in humans, neural activity in mesolimbic reward-circuitry and its functional neuroimaging correlates are related to dopamine release. To address this question, we obtained functional magnetic resonance imaging (fMRI) measures of reward-related neural activity and [11C]raclopride positron emission tomography measures of dopamine release in the same human participants, while they performed a delayed monetary incentive task. Across the cohort, a positive correlation emerged between neural activity of the substantia nigra/ventral tegmental area (SN/VTA), the main origin of dopaminergic neurotransmission, during reward anticipation and reward-related [11C]raclopride displacement as an index of dopamine release in the ventral striatum, major target of SN/VTA dopamine neurons. Neural activity in the ventral striatum/nucleus accumbens itself also correlated with ventral striatal dopamine release. Additionally, high-reward-related dopamine release was associated with increased activation of limbic structures, such as the amygdala and the hippocampus. The observed correlations of reward-related mesolimbic fMRI activation and dopamine release provide evidence that dopaminergic neurotransmission plays a quantitative role in human mesolimbic reward processing. Moreover, the combined neurochemical and hemodynamic imaging approach used here opens up new perspectives for the investigation of molecular mechanisms underlying human cognition.


The Journal of Neuroscience | 2007

Sleep Deprivation Increases A1 Adenosine Receptor Binding in the Human Brain: A Positron Emission Tomography Study

David Elmenhorst; Philipp T. Meyer; Oliver Winz; Andreas Matusch; Johannes Ermert; Heinz H. Coenen; Radhika Basheer; Helmut L. Haas; Karl Zilles; Andreas Bauer

It is currently hypothesized that adenosine is involved in the induction of sleep after prolonged wakefulness. This effect is partially reversed by the application of caffeine, which is a nonselective blocker of adenosine receptors. Here, we report that the most abundant and highly concentrated A1 subtype of cerebral adenosine receptors is upregulated after 24 h of sleep deprivation. We used the highly selective A1 adenosine receptor (A1AR) radioligand [18F]CPFPX ([18F]8-cyclopentyl-3-(3-fluoropropyl)-1-propylxanthine) and quantitative positron emission tomography to assess cerebral A1ARs before and after sleep deprivation in 12 healthy volunteers and a control group (n = 10) with regular sleep. In sleep deprived subjects, we found an increase of the apparent equilibrium total distribution volume in a region-specific pattern in all examined brain regions with a maximum increase in the orbitofrontal cortex (15.3%; p = 0.014). There were no changes in the control group with regular sleep. This is the first molecular imaging study that provides in vivo evidence for an A1AR upregulation in cortical and subcortical brain regions after prolonged wakefulness, indicating that A1AR expression is contributing to the homeostatic sleep regulation.


Neurology | 2012

[18F]FDG-PET is superior to [123I]IBZM-SPECT for the differential diagnosis of parkinsonism

Sabine Hellwig; Florian Amtage; Annabelle Kreft; Ralph Buchert; Oliver Winz; Werner Vach; Timo S. Spehl; Michel Rijntjes; Bernhard Hellwig; Cornelius Weiller; Christian Winkler; Wolfgang A. Weber; Oliver Tüscher; Philipp T. Meyer

Objective: Imaging of regional cerebral glucose metabolism with PET and striatal dopamine D2/D3 receptors (D2R) with SPECT improves the differential diagnosis of parkinsonism. We prospectively investigated 1) the diagnostic merits of these approaches in differentiating between Lewy body diseases (LBD; majority Parkinson disease [PD]) and atypical parkinsonian syndromes (APS); 2) the diagnostic value of [18F]fluorodeoxyglucose (FDG)-PET to differentiate among APS subgroups. Methods: Ninety-five of 107 consecutive patients with clinically suspected APS referred for imaging were recruited. [18F]FDG-PET scans were analyzed by visual assessment (including individual voxel-based statistical maps). Based on a priori defined disease-specific patterns, patients with putative APS were differentiated from LBD (first level) and allocated to the subgroups multiple system atrophy (MSA), progressive supranuclear palsy (PSP), or corticobasal degeneration (CBD) (second level). [123I] iodobenzamide (IBZM)-SPECT datasets were subjected to an observer-independent regions-of-interest analysis to assess striatal D2R availability. Movement disorder specialists made final clinical diagnoses after a median follow-up time of 12 months. Results: Seventy-eight patients with clinically verified APS (n = 44) or LBD (n = 34) were included in the statistical analysis. The area under the receiver operating characteristic curve for discrimination between APS and LBD was significantly larger for [18F]FDG-PET (0.94) than for [123I]IBZM-SPECT (0.74; p = 0.0006). Sensitivity/specificity of [18F]FDG-PET for diagnosing APS was 86%/91%, respectively. Sensitivity/specificity of [18F]FDG-PET in identifying APS subgroups was 77%/97% for MSA, 74%/95% for PSP, and 75%/92% for CBD. Conclusions: The diagnostic accuracy of [18F]FDG-PET for discriminating LBD from APS is considerably higher than for [123I]IBZM-SPECT. [18F]FDG-PET reliably differentiates APS subgroups.


Psychopharmacology | 2007

5-HT2A receptor density is decreased in the at-risk mental state

René Hurlemann; Andreas Matusch; Kai-Uwe Kühn; Julia Berning; David Elmenhorst; Oliver Winz; Heike Kölsch; Karl Zilles; Michael Wagner; Wolfgang Maier; Andreas Bauer

RationaleCurrent perspectives on the pathophysiology of schizophrenia direct attention to serotonergic (serotonin, 5-HT) dysregulation in the prodrome or at-risk mental state (ARMS).ObjectiveTo study the cerebral 5-HT2A receptor (5-HT2AR) in the ARMS with [18F]altanserin positron emission tomography (PET) and a bolus-infusion paradigm.Materials and methodsWe quantified the spatial distribution of 5-HT2AR binding potential (BP1′) in never-medicated subjects assigned to early (n = 6) and late (n = 8) prodromal states of schizophrenia relative to healthy controls (n = 21). Five single nucleotide polymorphisms (SNPs) in the 5-HT2AR-encoding gene (HTR2A; 13q14-21) were genotyped to control for a potential bias in BP1′ due to between-group differences in genotype distributions.ResultsGroup comparisons of partial-volume corrected PET data by statistical parametric mapping and confirmatory volume of interest analysis yielded a dissemination of BP1′ decreases consistent with increasing levels of risk. An additional decrease in caudate BP1′ was present in subjects who subsequently converted to first-episode psychosis (n = 5), but absent in non-converters (n = 9). Between-group differences were not confounded by a differential distribution of SNP genotypes.ConclusionThese results suggest a progressive reduction of cortical 5-HT2AR density as a surrogate biological measure of increased risk for schizophrenia, irrespective of conversion. Progressive reductions of subcortical 5-HT2AR density could provide an indicator of illness activity and help to predict imminent conversion to schizophrenia. Moreover, our findings substantiate the rationale for establishing a phase-specific psychopharmacological intervention in the ARMS that addresses the serotonergic component of vulnerability to schizophrenia.


Radiation Oncology | 2012

Dose-escalation using intensity-modulated radiotherapy for prostate cancer - evaluation of quality of life with and without 18 F-choline PET-CT detected simultaneous integrated boost

Michael Pinkawa; Marc D. Piroth; Richard Holy; Jens Klotz; Victoria Djukic; Nuria Escobar Corral; Mariana Caffaro; Oliver Winz; Thomas Krohn; Felix M. Mottaghy; Michael J. Eble

BackgroundIn comparison to the conventional whole-prostate dose escalation, an integrated boost to the macroscopic malignant lesion might potentially improve tumor control rates without increasing toxicity. Quality of life after radiotherapy (RT) with vs. without 18F-choline PET-CT detected simultaneous integrated boost (SIB) was prospectively evaluated in this study.MethodsWhole body image acquisition in supine patient position followed 1 h after injection of 178-355MBq 18F-choline. SIB was defined by a tumor-to-background uptake value ratio > 2 (GTVPET). A dose of 76Gy was prescribed to the prostate (PTVprostate) in 2Gy fractions, with or without SIB up to 80Gy. Patients treated with (n = 46) vs. without (n = 21) SIB were surveyed prospectively before (A), at the last day of RT (B) and a median time of two (C) and 19 month (D) after RT to compare QoL changes applying a validated questionnaire (EPIC - expanded prostate cancer index composite).ResultsWith a median cut-off standard uptake value (SUV) of 3, a median GTVPET of 4.0 cm3 and PTVboost (GTVPET with margins) of 17.3 cm3 was defined. No significant differences were found for patients treated with vs. without SIB regarding urinary and bowel QoL changes at times B, C and D (mean differences ≤3 points for all comparisons). Significantly decreasing acute urinary and bowel score changes (mean changes > 5 points in comparison to baseline level at time A) were found for patients with and without SIB. However, long-term urinary and bowel QoL (time D) did not differ relative to baseline levels - with mean urinary and bowel function score changes < 3 points in both groups (median changes = 0 points). Only sexual function scores decreased significantly (> 5 points) at time D.ConclusionsTreatment planning with 18F-choline PET-CT allows a dose escalation to a macroscopic intraprostatic lesion without significantly increasing toxicity.


Journal of Cerebral Blood Flow and Metabolism | 2011

The applicability of SRTM in [18F]fallypride PET investigations: Impact of scan durations

Ingo Vernaleken; Lisa Peters; Mardjan Raptis; Robert Lin; Hans Georg Buchholz; Yun Zhou; Oliver Winz; Frank Rösch; Peter Bartenstein; Dean F. Wong; W. Schäfer; Gerhard Gründer

The high-affinity radioligand [18F]fallypride (FP) is frequently used for quantification of striatal/extrastriatal D2/3 receptors and the receptor occupancies of antipsychotics (APs). Its 110 minutes half-life allows long scan durations. However, the optimum scan duration is a matter of debate. This investigation focuses on scan-duration-related effects on simplified reference tissue model (SRTM) results and the time point of transient equilibrium in a large sample of dynamic FP positron emission tomography (PET) scans. Fifty drug-free and 50 AP-treated subjects underwent FP-PET scans (180 minutes scan duration). The binding potential (BPND) of the putamen, thalamus, and temporal cortex were calculated using the SRTM and the transient equilibrium model. Furthermore, receptor occupancies were calculated for AP-treated patients. Transient equilibrium in the unblocked putamen occurred after 121 ± 29.6 minutes. The transient equilibrium occurred much earlier in the extrastriatal regions or under AP treatment. Stepwise scan shortening caused BPND under-estimations of 0.58% for the first 10-minute reduction (putamen, SRTM), finally reaching 5.76% after 1 hour scan-time reduction. We observed preferential extrastriatal AP binding irrespective of the analytical method. [18F]fallypride scan durations of 180 minutes reliably reach equilibrium even in D2/3-receptor-rich regions. Moderate reductions in FP scan durations only caused small changes to SRTM results even in receptor-rich regions. Apparently, the D2/3 receptor occupancy results of APs, especially preferential extrastriatal binding observations, are not relevantly biased by inappropriate scan durations.


The Journal of Nuclear Medicine | 2012

Caffeine Occupancy of Human Cerebral A1 Adenosine Receptors: In Vivo Quantification with 18F-CPFPX and PET

David Elmenhorst; Philipp T. Meyer; Andreas Matusch; Oliver Winz; Andreas Bauer

Caffeine is the neuroactive agent in coffee and tea and is a broadly consumed stimulant. It is a nonselective antagonist of the neuromodulator adenosine and, if applied in commonly consumed doses, evokes its stimulating effects through the blockade of adenosine receptors. 18F-8-cyclopentyl-3-(3-fluoropropyl)-1-propylxanthine (18F-CPFPX) has been established as a highly selective and affine PET ligand for the A1 adenosine receptor (A1AR). The objective of the present study was to visualize and quantify the in vivo occupancy of the human cerebral A1AR by caffeine using 18F-CPFPX and PET. Methods: Fifteen subjects (age range, 24–68 y) underwent a 140-min bolus–plus–constant-infusion PET experiment after at least 36 h of caffeine abstinence. Metabolite-corrected blood data were used to calculate steady-state distribution volumes (VT) during the baseline condition of the scan between 70 and 90 min. Subsequently, subjects received a 10-min infusion of varying concentrations (0.5–4.3 mg/kg of body weight) of caffeine at 90 min. Occupancy VT of the A1AR was thereafter estimated using data acquired between 120 and 140 min. Occupancy levels were calculated using the Lassen plot, from which the inhibitory concentrations of 50% were derived. Plasma levels of caffeine were determined at regular intervals. One subject received an intravenous vehicle as a placebo. Results: Caffeine displaced 5%–44% of 18F-CPFPX binding in a concentration-dependent manner. There was no change of radioligand binding after the administration of placebo. Half-maximal displacement was achieved at a plasma caffeine concentration of 67 μM, which corresponds to 450 mg in a 70-kg subject or approximately 4.5 cups of coffee. Conclusion: Given a biologic half-life of about 5 h, caffeine might therefore occupy up to 50% of the cerebral A1AR when caffeinated beverages are repeatedly consumed during a day. Furthermore, the present study provides evidence that 18F-CPFPX PET is suitable for studying the cerebral actions of caffeine, the most popular neurostimulant worldwide.


The Journal of Neuroscience | 2013

The impact of dopamine on aggression: an [18F]-FDOPA PET Study in healthy males.

Thorben Schlüter; Oliver Winz; Karsten Henkel; Susanne Prinz; Lena Rademacher; Jörn Schmaljohann; Kai Dautzenberg; Paul Cumming; Yoshitaka Kumakura; Steffen Rex; Felix M. Mottaghy; Gerhard Gründer; Ingo Vernaleken

Cerebral dopamine (DA) transmission is thought to be an important modulator for the development and occurrence of aggressive behavior. However, the link between aggression and DA transmission in humans has not been investigated using molecular imaging and standardized behavioral tasks. We investigated aggression as a function of DA transmission in a group of (N = 21) healthy male volunteers undergoing 6-[18F]-fluoro-l-DOPA (FDOPA)-positron emission tomography (PET) and a modified version of the Point Subtraction Aggression Paradigm (PSAP). This task measures aggressive behavior during a monetary reward-related paradigm, where a putative adversary habitually tries to cheat. The participant can react in three ways (i.e., money substraction of the putative opponent [aggressive punishment], pressing a defense button, or continuing his money-making behavior). FDOPA-PET was analyzed using a steady-state model yielding estimates of the DA-synthesis capacity (K), the turnover of tracer DA formed in living brain (kloss), and the tracer distribution volume (Vd), which is an index of DA storage capacity. Significant negative correlations between PSAP aggressive responses and the DA-synthesis capacity were present in several regions, most prominently in the midbrain (r = −0.640; p = 0.002). Lower degrees of aggressive responses were associated with higher DA storage capacity in the striatum and midbrain. Additionally, there was a significant positive correlation between the investment into monetary incentive responses on the PSAP and DA-synthesis capacity, notably in the midbrain (r = +0.618, p = 0.003). The results suggest that individuals with low DA transmission capacity are more vulnerable to reactive/impulsive aggression in response to provocation.


IEEE Transactions on Medical Imaging | 2013

Study-Parameter Impact in Quantitative 90-Yttrium PET Imaging for Radioembolization Treatment Monitoring and Dosimetry

Andreas Goedicke; Yannick Berker; Frederik A. Verburg; Florian F. Behrendt; Oliver Winz; Felix M. Mottaghy

A small positron-generating branch in 90-Yttrium (90Y) decay enables post-therapy dose assessment in liver cancer radioembolization treatment. The aim of this study was to validate clinical 90Y positron emission tomography (PET) quantification, focusing on scanner linearity as well as acquisition and reconstruction parameter impact on scanner calibration. Data from three dedicated phantom studies (activity range: 55.2 MBq-2.1 GBq) carried out on a Philips Gemini TF 16 PET/CT scanner were analyzed after reconstruction with up to 361 parameter configurations. For activities above 200 MBq, scanner linearity could be confirmed with relative error margins <;4%. An acquisition-time-normalized calibration factor of 1.04 MBq·s/CNTS was determined for the employed scanner. Stable activity convergence was found in hot phantom regions with relative differences in summed image intensities between -3.6% and +2.4%. Absolute differences in background noise artifacts between - 79.9% and + 350% were observed. Quantitative accuracy was dominated by subset size selection in the reconstruction. Using adequate segmentation and optimized acquisition parameters, the average activity recovery error induced by the axial scanner sensitivity profile was reduced to +2.4%±3.4% (mean ± standard deviation). We conclude that post-therapy dose assessment in 90Y PET can be improved using adapted parameter setups.


Journal of Neural Transmission | 2007

Acute S-ketamine application does not alter cerebral [18F]altanserin binding : a pilot PET study in humans

A. Matusch; René Hurlemann; E. Rota Kops; Oliver Winz; D. Elmenhorst; H. Herzog; K. Zilles; Andreas Bauer

SummaryModeling short-term psychotic states with subanaesthetic doses of ketamine provides substantial experimental evidence in support of the glutamate hypothesis of schizophrenia. Ketamine exerts its pharmacological effects both directly via interactions with glutamate receptors and indirectly by stimulating presynaptic release of endogenous serotonin (5-HT). The aim of this feasibility study was to examine whether acute ketamine-induced 5-HT release interferes with the binding of the 5-HT2A receptor (5-HT2AR) radioligand [18F]altanserin and positron emission tomography (PET). Two subjects treated with ketamine and one subject treated with placebo underwent [18F]altanserin PET at distribution equilibrium conditions. Robust physiological, psychopathological and cognitive effects were present at ketamine plasma concentrations exceeding 100 µg/l during >70 min. Notwithstanding, we observed stable radioligand binding (changes ±95% CI of −1.0 ± 1.6% and +4.1 ± 1.8% versus −1.2 ± 2.6%) in large cortical regions presenting high basal uptake of both, [18F]altanserin and ketamine. Marginal decreases of 4% of radioligand binding were observed in the frontal lobe, and 8% in a posteriorily specified frontomesial subregion. This finding is not compatible with a specific radioligand displacement from 5-HT2AR which should occur proportionally throughout the whole brain. Instead, the spatial pattern of these minor reductions was congruent with ketamine-induced increases in cerebral blood flow observed in a previous study using [15O]butanol PET. This may caused by accelerated clearance of unspecifically bound [18F]altanserin from cerebral tissue with increased perfusion. In conclusion, this study suggests that [18F]altanserin PET is not sensitive to acute neurotransmitter fluctuations under ketamine. Advantageously, the stability of [18F]altanserin PET towards acute influences is a prerequisite for its future use to detect sub-acute and chronic effects of ketamine.

Collaboration


Dive into the Oliver Winz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Bauer

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Matusch

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

Karl Zilles

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge