Olivia Hurtado
Complutense University of Madrid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Olivia Hurtado.
Circulation | 2007
Javier R. Caso; Jesús M. Pradillo; Olivia Hurtado; Pedro Lorenzo; María A. Moro; Ignacio Lizasoain
Background— Stroke is the second to third leading cause of death. Toll-like receptor 4 (TLR4) is a signaling receptor in innate immunity that is a specific immunologic response to systemic bacterial infection and cerebral injury. The role of TLR4 in brain ischemia has not been examined yet. We have therefore investigated whether cerebral ischemia and inflammation produced by permanent occlusion of the middle cerebral artery differ in mice that lack a functional TLR4 signaling pathway. Methods and Results— Permanent occlusion of the middle cerebral artery was performed on 2 strains of TLR4-deficient mice (C3H/HeJ and C57BL/10ScNJ) and respective controls (C3H/HeN and C57BL/10ScSn). Stroke outcome was evaluated by determination of infarct volume and assessment of neurological scores. Brains were collected 24 hours and 7 days after stroke. When compared with control mice, TLR4-deficient mice had lower infarct volumes and better outcomes in neurological and behavioral tests. Mice that lacked TLR4 had minor expression of stroke-induced interferon regulatory factor-1, inducible nitric oxide synthase, and cyclooxygenase-2, mediators implicated in brain damage. The levels of interferon-β and of the lipid peroxidation marker malondialdehyde were also lower in brains from TLR4-deficient mice than in those from control mice. In addition, the expression of matrix metalloproteinase-9, which is induced and mediates brain damage, was also reduced in TLR4-deficient mice after experimental stroke. Conclusions— TLR4-deficient mice have minor infarctions and less inflammatory response after an ischemic insult. These data demonstrate that TLR4 signaling and innate immunity are involved in brain damage and in inflammation triggered by ischemic injury.
Neuropsychopharmacology | 2002
José L. M. Madrigal; Olivia Hurtado; María A. Moro; Ignacio Lizasoain; Pedro Lorenzo; Antonio Castrillo; Lisardo Boscá; Juan C. Leza
The underlying mechanisms by which physical or psychological stress causes neurodegeneration are still unknown. We have demonstrated that the high-output and long-lasting synthesizing source of nitric oxide (NO), inducible NO synthase (iNOS), is expressed in brain cortex after three weeks of repeated stress and that its overexpression accounts for the neurodegenerative changes found in this situation. Now we have found that a short duration of stress (immobilization for 6 h) also induces the expression of iNOS in brain cortex in adult male rats. In order to elucidate the possible mechanisms involved in iNOS expression, we have studied the role of the cytokine tumor necrosis factor-α (TNF-α) released in brain during stress. We have shown that there is an increase in soluble TNF-α levels after 1 h of stress in cortex and that this is preceded by an increase in TNF-α-convertase (TACE) activity in brain cortex as soon as 30 min after immobilization. Stress-induced increase in both TACE activity and TNF-α levels seems to be mediated by excitatory amino acids since they can be blocked by MK-801 (dizocilpine) (0.2 mg/kg i.p.), an antagonist of the N-methyl-D-aspartate subtype of glutamate receptor. In order to study the role of TACE and TNF-α in iNOS induction, a group of animals were i.p. injected with the preferred TACE inhibitor BB1101 (2 and 10 mg/kg). Indeed, BB1101 inhibited iNOS expression induced by six hours of stress. In addition, we studied the role of the transcription factor nuclear factor κB (NF-κB), which is required for iNOS expression. We have found that the administration of the TACE inhibitor BB1101 inhibited the stress-stimulated translocation of NF-κB to the nucleus. Taken together, these findings indicate that glutamate receptor activation induces TACE up-regulation and subsequent increase in TNF-α levels, and this account for stress-induced iNOS expression via NF-κB activation, supporting a possible neuroprotective role for specific TACE inhibitors in this situation.
Stroke | 2007
Tomás Sobrino; Olivia Hurtado; María A. Moro; Manuel Rodríguez-Yáñez; Mar Castellanos; David Brea; Octavio Moldes; Miguel Blanco; Juan F. Arenillas; Rogelio Leira; A. Dávalos; Ignacio Lizasoain; José Castillo
Background and Purpose— Increased circulating endothelial progenitor cells (EPC) have been associated with a low cardiovascular risk and may be involved in endothelial cell regeneration. The present study was designed to evaluate the prognostic value of EPC in acute ischemic stroke. Methods— Forty-eight patients with a first-ever nonlacunar ischemic stroke were prospectively included in the study within 12 hours of symptoms onset. Stroke severity was evaluated by the National Institutes of Health Stroke Scale, and functional outcome was assessed at 3 months by the modified Rankin Scale (mRS). Infarct volume growth between admission and days 4 to 7 was measured on multiparametric MRI. EPC colonies were defined as early outgrowth colony-forming unit-endothelial cell (CFU-EC). The increment of CFU-EC was quantified during the first week and defined as the absolute difference between the number of CFU-EC at day 7 and admission. The influence of CFU-EC increase on good functional outcome (mRS ≤2) and infarct growth was analyzed by logistic regression and linear models. Results— Patients with good outcome (n=25) showed a higher CFU-EC increment during the first week (median [quartiles], 23 [11, 36] versus −3 [−7, 1], P<0.0001) compared with patients with poor outcome. CFU-EC increment ≥4 during the first week was associated with good functional outcome at 3 months (odds ratio, 30.7; 95% CI, 2.4 to 375.7; P=0.004) after adjustment for baseline stroke severity, ischemic volume and thrombolytic treatment. For each unit increase in the CFU-EC the mean reduction in the growth of infarct volume was 0.39 (0.03 to 0.76) mL (P=0.033). Conclusions— The increase of circulating EPC after acute ischemic stroke is associated with good functional outcome and reduced infarct growth. These findings suggest that EPC might participate in neurorepair after ischemic stroke.
Stroke | 2008
Javier R. Caso; Jesús M. Pradillo; Olivia Hurtado; Juan C. Leza; María A. Moro; Ignacio Lizasoain
Background and Purpose— Psychological stress causes an inflammatory response in the brain and is able to exacerbate brain damage caused by experimental stroke. We previously reported that subacute immobilization stress in mice worsens stroke outcome through mechanisms that involve inflammatory mechanisms, such as accumulation of oxidative/nitrosative mediators and expression of inducible nitric oxide synthase and cyclooxygenase-2 in the brain. Some of these inflammatory mediators could be regulated by innate immunity, the activation of which takes place in the brain and produces an inflammatory response mediated by toll-like receptors (TLRs). Recently, we described the implications of TLR4 in ischemic injury, but the role of TLR4 in stress has not yet been examined. We therefore investigated whether inflammation produced by immobilization stress differs in mice that lack a functional TLR4 signaling pathway. Methods— We used an experimental paradigm consisting of the exposure of mice to repeated immobilization sessions (1 hour daily for 7 days) before permanent middle cerebral artery occlusion. Results— We found that TLR4-deficient mice subjected to subacute stress had a better behavioral condition compared with normal mice (C3H/HeN) and that this effect was associated with a minor inflammatory response (cyclooxygenase-2 and inducible nitric oxide synthase expression) and lipid peroxidation (malondialdehyde levels) in brain tissue. Furthermore, previous exposure to stress was followed by a smaller infarct volume after permanent middle cerebral artery occlusion in TLR4-deficient mice than in mice that express TLR4 normally. Conclusions— Our results indicate that TLR4 is involved in the inflammatory response after subacute stress and its exacerbating effect on stroke. These data implicate the effects of innate immunity on inflammation and damage in the brain after stroke.
The Journal of Neuroscience | 2004
Cristina Romera; Olivia Hurtado; Sofia H. Botella; Ignacio Lizasoain; Antonio Cárdenas; Juan C. Leza; Pedro Lorenzo; María A. Moro
A short ischemic event [ischemic preconditioning (IPC)] can result in a subsequent resistance to severe ischemic injury (ischemic tolerance). Although tumor necrosis factor-α (TNF-α) contributes to the brain damage found after cerebral ischemia, its expression and neuroprotective role in models of IPC have also been described. Regarding the role of TNF-α convertase (TACE/ADAM17), we have recently shown its upregulation in rat brain after IPC induced by transient middle cerebral artery occlusion and that subsequent TNF-α release accounts for at least part of the neuroprotection found in this model. We have now used an in vitro model of IPC using rat cortical cultures exposed to sublethal oxygen-glucose deprivation (OGD) to investigate TACE expression and activity after IPC and the subsequent mechanisms of ischemic tolerance. OGD-induced cell death was significantly reduced in cells exposed to IPC by sublethal OGD 24 hr before, an effect that was inhibited by the TACE inhibitor BB3103 (1 μm) and anti-TNF-α antibody (2 μg/ml) and that was mimicked by TNF-α (10 pg/ml) preincubation. Western blot analysis showed that TACE expression is increased after IPC. IPC caused TNF-α release, an effect that was blocked by the selective TACE inhibitor BB-3103. In addition, IPC diminished the increase in extracellular glutamate caused by OGD and increased cellular glutamate uptake and expression of EAAT2 and EAAT3 glutamate transporters; however, only EAAT3 upregulation was mediated by increased TNF-α. These data demonstrate that neuroprotection induced by IPC involves upregulation of glutamate uptake partly mediated by TACE overexpression.
Journal of Neurochemistry | 2008
Antonio Cárdenas; María A. Moro; Olivia Hurtado; Juan C. Leza; Pedro Lorenzo; Antonio Castrillo; Oscar G. Bodelón; Lisardo Boscá; Ignacio Lizasoain
Abstract: Nitric oxide synthesis by inducible nitric oxide synthase (iNOS) has been postulated to contribute to ischemia‐reperfusion neurotoxicity. The expression of this enzyme has been demonstrated in cells present in the postischemic brain. The mechanisms of iNOS expression after cerebral ischemia are a subject of current research. We therefore decided to investigate whether glutamate, which is released in ischemia and is implicated in neurotoxicity, might be involved in the mechanisms by which oxygen and glucose deprivation (OGD) leads to the expression of iNOS in rat forebrain slices. In this model, we have shown previously that 20 min of OGD causes the expression of iNOS. We have now found that the NMDA receptor antagonist MK‐801 blocks the expression of iNOS, suggesting that the activation of the NMDA subtype of glutamate receptor is implicated in the mechanisms that lead to the expression of this isoform. Moreover, we have found that glutamate alone could trigger the induction process, as shown by the appearance of a Ca2+‐independent NOS activity and by the detection of iNOS mRNA and protein in slices exposed to glutamate. Glutamate‐dependent iNOS expression was concentration‐dependent and was blocked by EGTA and by the inhibitors of nuclear factor κB (NF‐κB) activation pyrrolidine dithiocarbamate and MG132. In addition, glutamate induced NF‐κB translocation to the nucleus, an effect that was inhibited by MG132. Taken together, our data suggest that activation of NMDA receptors by glutamate released in ischemia is involved in the expression of iNOS in rat forebrain slices via a Ca2+‐dependent activation of the transcription factor NF‐κB. To our knowledge, this is the first report showing an implication of excitatory amino acids in the expression of iNOS caused by ischemia.
Stroke | 2008
Jovita Ponce; Natalia Pérez de la Ossa; Olivia Hurtado; Monica Millan; Juan F. Arenillas; A. Dávalos; Teresa Gasull
Background and Purpose— Excess brain extracellular glutamate induced by cerebral ischemia leads to neuronal death, mainly through overactivation of N-methyl-d-aspartate (NMDA) receptors. The cholesterol-lowering drugs statins have been reported to protect from NMDA-induced neuronal death but, so far, the mechanism underlying this protection remains unclear. Because NMDA receptors have been reported to be associated with the cholesterol-rich membrane domains known as lipid rafts, we have investigated the effect of treatments that deplete cholesterol levels on excitotoxicity and on association of NMDA receptors to lipid rafts. Methods— Primary neuronal cultures were pretreated with inhibitors of cholesterol synthesis and cholesterol, and NMDA-induced cell death was determined by measuring release of lactate dehydrogenase. Lipid raft fractions were isolated and Western blots were performed. Results— Treatment with the inhibitors of cholesterol synthesis simvastatin, which inhibits the first step of cholesterol synthesis, or AY9944, which inhibits the last step of cholesterol synthesis, protected neurons from NMDA-induced neuronal death by 70% and 54%, respectively. Treatment with these compounds reduced neuronal cholesterol levels by 35% and 13%, respectively. Simvastatin and AY9944 reduced the association of the subunit 1 of NMDA receptors (NMDAR1) to lipid rafts by 42% and 21%, respectively, and did not change total expression of NMDAR1. Addition of cholesterol reduced neuroprotection by statins and AY9944, and partially reverted the effect of simvastatin on the association of NMDAR1 to lipid rafts. Conclusions— These data demonstrate that reduction of cholesterol levels protects from NMDA-induced neuronal damage probably by reducing the association of NMDA receptors to lipid rafts.
Journal of Cerebral Blood Flow and Metabolism | 2007
Cristina Romera; Olivia Hurtado; Judith Mallolas; Marta P. Pereira; Jesús R Morales; Alejandro Romera; Joaquín Serena; J. Vivancos; F. Nombela; Pedro Lorenzo; Ignacio Lizasoain; María A. Moro
Excessive levels of extracellular glutamate in the nervous system are excitotoxic and lead to neuronal death. Glutamate transport, mainly by glutamate transporter GLT1/EAAT2, is the only mechanism for maintaining extracellular glutamate concentrations below excitotoxic levels in the central nervous system. We recently showed that neuroprotection after experimental ischemic preconditioning (IPC) involves, at least partly, the upregulation of the GLT1/EAAT2 glutamate transporter in astrocytes, but the mechanisms were unknown. Thus, we decided to explore whether activation of the nuclear receptor peroxisome proliferator-activated receptor (PPAR)γ, known for its antidiabetic and antiinflammatory properties, is involved in glutamate transport. First, we found that the PPARγ antagonist T0070907 inhibits both IPC-induced tolerance and reduction of glutamate release after lethal oxygen-glucose deprivation (OGD) (70.1% ± 3.4% versus 97.7% ± 5.2% of OGD-induced lactate dehydrogenase (LDH) release and 61.8% ± 5.9% versus 85.9% ± 7.9% of OGD-induced glutamate release in IPC and IPC + T0070907 1 μmol/L, respectively, n = 6 to 12, P < 0.05), as well as IPC-induced astrocytic GLT-1 overexpression. IPC also caused an increase in nuclear PPARγ transcriptional activity in neurons and astrocytes (122.1% ± 8.1% and 158.6% ± 22.6% of control PPARγ transcriptional activity, n = 6, P < 0.05). Second, the PPARγ agonist rosiglitazone increased both GLT-1/EAAT2 mRNA and protein expression and [3H]glutamate uptake, and reduced OGD-induced cell death and glutamate release (76.3% ± 7.9% and 65.5% ± 15.1% of OGD-induced LDH and glutamate release in rosiglitazone 1 μmol/l, respectively, n = 6 to 12, P < 0.05). Finally, we have identified six putative PPAR response elements (PPREs) in the GLT1/EAAT2 promoter and, consistently, rosiglitazone increased fourfold GLT1/EAAT2 promoter activity. All these data show that the GLT1/EAAT2 glutamate transporter is a target gene of PPARγ leading to neuroprotection by increasing glutamate uptake.
Stroke | 2013
Macarena Hernández-Jiménez; Olivia Hurtado; María I. Cuartero; Iván Ballesteros; Ana Moraga; Jesús M. Pradillo; Michael W. McBurney; Ignacio Lizasoain; María A. Moro
Background and Purpose— Sirtuin 1 (SIRT1) is a member of NAD+-dependent protein deacetylases implicated in a wide range of cellular functions and has beneficial properties in pathologies including ischemia/reperfusion processes and neurodegeneration. However, no direct evidence has been reported on the direct implication of SIRT1 in ischemic stroke. The aim of this study was to establish the role of SIRT1 in stroke using an experimental model in mice. Methods— Wild-type and Sirt1−/− mice were subjected to permanent focal ischemia by permanent ligature. In another set of experiments, wild-type mice were treated intraperitoneally with vehicle, activator 3 (SIRT1 activator, 10 mg/kg), or sirtinol (SIRT1 inhibitor, 10 mg/kg) for 10 minutes, 24 hours, and 40 hours after ischemia. Brains were removed 48 hours after ischemia for determining the infarct volume. Neurological outcome was evaluated using the modified neurological severity score. Results— Exposure to middle cerebral artery occlusion increased SIRT1 expression in neurons of the ipsilesional mouse brain cortex. Treatment of mice with activator 3 reduced infarct volume, whereas sirtinol increased ischemic injury. Sirt1−/− mice displayed larger infarct volumes after ischemia than their wild-type counterparts. In addition, SIRT1 inhibition/deletion was concomitant with increased acetylation of p53 and nuclear factor &kgr;B (p65). Conclusions— These results support the idea that SIRT1 plays an important role in neuroprotection against brain ischemia by deacetylation and subsequent inhibition of p53-induced and nuclear factor &kgr;B-induced inflammatory and apoptotic pathways.
Journal of Cerebral Blood Flow and Metabolism | 2006
Marta P. Pereira; Olivia Hurtado; Antonio Cárdenas; Lisardo Boscá; José Castillo; Antoni Dávalos; J. Vivancos; Joaquín Serena; Pedro Lorenzo; Ignacio Lizasoain; María A. Moro
Stroke triggers an inflammatory cascade which contributes to a delayed cerebral damage, thus implying that antiinflammmatory strategies might be useful in the treatment of acute ischaemic stroke. Since two unrelated peroxisome proliferator-activated receptor-γ (PPARγ) agonists, the thiazolidinedione rosiglitazone (RSG) and the cyclopentenone prostaglandin 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), have been shown to possess antiinflammatory properties, we have tested their neuroprotective effects in experimental stroke. Rosiglitazone or 15d-PGJ2 were administered to rats 10 mins or 2 h after permanent middle cerebral artery occlusion (MCAO). Stroke outcome was evaluated by determination of infarct volume and assesment of neurological scores. Brains were collected for protein expression, gene array analyses and gene shift assays. Our results show that both compounds decrease MCAO-induced infarct size and improve neurological scores. At late times, the two compounds converge in the inhibition of MCAO-induced brain expression of inducible NO synthase and the matrix metalloproteinase 9. Interestingly, at early times, complementary DNA microarrays and gene shift assays show that different mechanisms are recruited. Analysis of early nuclear p65 and late cytosolic IκBα protein levels shows that both compounds inhibit nuclear factor-κB signalling, although at different levels. All these results suggest both PPARγ-dependent and independent pathways, and might be useful to design both therapeutic strategies and prognostic markers for stroke.